「论文阅读」-基于Ricci流的网络社区检测

Abstract

Many complex networks in the real world have community structures – groups of well-connected nodes with important functional roles. It has been well recognized that the identification of communities bears numerous practical applications. While existing approaches mainly apply statistical or graph theoretical/combinatorial methods for community detection, in this paper, we present a novel geometric approach which enables us to borrow powerful classical geometric methods and properties. By considering networks as geometric objects and communities in a network as a geometric decomposition, we apply curvature and discrete Ricci flow, which have been used to decompose smooth manifolds with astonishing successes in mathematics, to break down communities in networks. We tested our method on networks with ground-truth community structures, and experimentally confirmed the effectiveness of this geometric approac

CoolCats
CoolCats
理学学士

我的研究兴趣是时空数据分析、知识图谱、自然语言处理与服务端开发