「论文阅读」- GeoMAN Multi Level Attention Networks for Geo Sensory Time Series Prediction

Abstract

Numerous sensors have been deployed in different geospatial locations to continuously and cooperatively monitor the surrounding environment, such as the air quality. These sensors generate multiple geo-sensory time series, with spatial correlations between their readings. Forecasting geo-sensory time series is of great importance yet very challenging as it is affected by many complex factors, i.e., dynamic spatio-temporal correlations and external factors. In this paper, we predict the readings of a geo-sensor over several future hours by using a multi-level attention-based recurrent neural network that considers multiple sensors’ readings, meteorological data, and spatial data. More specifically, our model consists of two major parts: 1) a multi-level attention mechanism to model the dynamic spatio-temporal dependencies. 2) a general fusion module to incorporate the external factors from different domains. Experiments on two types of real-world datasets, viz., air quality data and water quality data, demonstrate that our method outperforms nine baseline methods.

论文概况

研究问题

fig1

预测位置传感器记录的时间序列信息具有挑战性,因为时间序列受如下因素影响

  • 动态的时空相关性
  • 外部因素

研究价值

(PS: 同研究问题)

现有方法及其不足

(PS: 文中未详细分析,baseline较老)

位置传感器时间序列预测

基于自回归的模型(ARIMA、VAR)未考虑geo-sensory时间序列中的空间相关性。

时空数据深度学习方法

RNN、LSTM、GRU仅仅捕获时间依赖

注意力机制

本文提出的方法

  • 多层次注意力机制,建模动态的时空依赖性
  • 融合来自多领域的外部因素

fig2

实验

在两种类型的真实数据集上进行实验:

  • 空气质量数据集
  • 水质数据集
CoolCats
CoolCats
理学学士

我的研究兴趣是时空数据分析、知识图谱、自然语言处理与服务端开发