
Personalized Route Recommendation using
Big Trajectory Data

Jian Dai∗†, Bin Yang‡, Chenjuan Guo§, Zhiming Ding†

∗University of Chinese Academy of Sciences, Beijing, China
†Institute of Software, Chinese Academy of Sciences, Beijing, China

daijian@nfs.iscas.ac.cn
‡Department of Computer Science, Aalborg University, Denmark

byang@cs.aau.dk
§Department of Computer Science, Aarhus University, Denmark

cguo@cs.au.dk

Abstract—When planning routes, drivers usually consider a
multitude of different travel costs, e.g., distances, travel times,
and fuel consumption. Different drivers may choose different
routes between the same source and destination because they may
have different driving preferences (e.g., time-efficient driving v.s.
fuel-efficient driving). However, existing routing services support
little in modeling multiple travel costs and personalization—they
usually deliver the same routes that minimize a single travel cost
(e.g., the shortest routes or the fastest routes) to all drivers.

We study the problem of how to recommend personalized
routes to individual drivers using big trajectory data. First, we
provide techniques capable of modeling and updating different
drivers’ driving preferences from the drivers’ trajectories while
considering multiple travel costs. To recommend personalized
routes, we provide techniques that enable efficient selection of
a subset of trajectories from all trajectories according to a
driver’s preference and the source, destination, and departure
time specified by the driver. Next, we provide techniques that
enable the construction of a small graph with appropriate edge
weights reflecting how the driver would like to use the edges
based on the selected trajectories. Finally, we recommend the
shortest route in the small graph as the personalized route to the
driver. Empirical studies with a large, real trajectory data set
from 52,211 taxis in Beijing offer insight into the design properties
of the proposed techniques and suggest that they are efficient and
effective.

I. INTRODUCTION

Traveling plays an important role in our lives and more
and more people choose to use vehicles for traveling. To facil-
itate route selection, a variety of navigation services become
available and are able to recommend routes when a source,
a destination, and sometimes, a departure time, are given.
However, the routes recommended by existing navigation
services are not always preferred by all drivers. For example,
a recent study suggests that the routes provided by a leading
navigation service often fail to agree with the routes chosen
by local drivers [5].

The reason of the disagreement may be two-fold. First,
most of the existing navigation services only consider a limited
number of travel costs, e.g., distance or travel time, and return
routes that minimize a single travel cost, e.g., shortest routes or
fastest routes. In contrast, drivers may consider a multitude of

different travel costs. For instance, due to an increasing public
awareness of environmental protection and high fuel pricing,
many drivers increasingly consider fuel consumption [1], in
addition to travel times and travel distances.

Second, existing navigation services provide all drivers
with the same routes (e.g., shortest routes or fastest routes)
and they do not take into account individual drivers’ driving
preferences (e.g., time-efficient driving, fuel-efficient driving,
or some trade-off between them).

These motivate us to study how to model drivers’ driving
preferences and to provide personalized routes to different
drivers, which can better satisfy drivers’ needs.

Fig. 1 shows two different drivers’s choices of routes from
source s to destination d. Both routes have similar distances,
however, routeA takes less travel time and routeB takes less
fuel1. This clearly demonstrates that the two drivers have
different driving preferences—one tries to save time and the
other aims to save fuel. In many cases, drivers also choose
routes according to trade-offs among multiple travel costs of
interest. Since different drivers may have different trade-offs, a
single, recommended route cannot be preferred by all drivers.

d

s

route

route

Fig. 1. Routes Used by Two Different Drivers

With the rapid development and continuing use of vehicle
tracking technologies (e.g., GPS), big trajectory data becomes
available [24], [16]. The big trajectory data provides opportuni-
ties to enable better navigation services that consider multiple
travel costs and individual drivers’ driving preferences. In
particular, it is possible to learn and update individual drivers’

1Travel time and fuel consumption can be computed based on speed
information recorded in GPS trajectories.

978-1-4799-7964-6/15/$31.00 © 2015 IEEE ICDE Conference 2015543

Authorized licensed use limited to: Central South University. Downloaded on January 11,2021 at 06:29:31 UTC from IEEE Xplore. Restrictions apply.

driving preferences according to their trajectories. Further,
when a driver plans a route, the trajectories used by those
drivers who have similar driving preferences to the driver can
be utilized to suggest personalized route to the driver.

To the best of our knowledge, this paper is the first to
explore the possibility of providing personalized route recom-
mendation using big trajectory data. Specifically, the paper
makes four contributions. First, it proposes a novel problem
on personalized route recommendation based on big trajectory
data. Second, it proposes techniques to model and update
driving preferences from drivers’ trajectories. Our driving
preference model can support arbitrary number of travel costs
of interest and distributions of cost ratios. Third, it proposes
a local and a global route recommendation algorithms to
recommend personalized routes to drivers. The algorithms are
novel because (a) reference trajectories are selected from big
trajectories while considering driving preferences; (b) local
and global route recommendations are proposed to support
different routing scenarios. Fourth, it reports on comprehensive
experiments conducted on a substantial, real trajectory data
set. These elicit design properties of the paper’s proposals
and characterize the efficiency and the effectiveness of the
personalized route recommendation.

The remainder of the paper is structured as follows. Sec-
tion II defines the driving preference and formalizes the prob-
lem. Section III describes the indexes. Section IV describes
the retrieval of reference trajectories. Section V presents the
personalized route recommendation methods. Section VI re-
ports on the empirical evaluation. Section VII reviews related
work and Section VIII concludes the paper.

II. PROBLEM FORMULATION

A. Basic Concepts

Definition 1: A road network is a directed graph G =
(V,E), where V is a vertex set and E ⊆ V ×V is an edge set.
A vertex vi ∈ V denotes a road junction or a road end. An
edge ek = (vi, vj) ∈ E represents a directed road segment,
indicating that travel is possible from its starting vertex vi to
its ending vertex vj . To ease the following discussions, we
denote the starting and ending vertices of edge ek as ek.s and
ek.d, respectively.

Definition 2: A Route R = 〈r1, r2, · · ·, rA〉 is a sequence
of edges, where ri ∈ E and ri 6= rj if i 6= j. The consecutive
edges must share a vertex, i.e., ri.d = ri+1.s where 1 6 i < A.

Definition 3: A trajectory T = 〈〈t1, p1〉, 〈t2, p2〉, . . .,
〈tB , pB〉〉 is a sequence of GPS records pertaining to a trip,
where each GPS record 〈ti, pi〉 indicates that a vehicle is at
location pi at timestamp ti. Further, the GPS records in a
trajectory are ordered by their timestamps, i.e., ti < tj if
1 6 i < j 6 B. Map matching [17] is used to map a
GPS record to a specific location on an edge in the underlying
road network. A trajectory T is also associated with a driver
identifier, denoted as T .driver , indicating who made the
trajectory.

Definition 4: A trajectory is associated with a cost vector
costs(T) = 〈c1, c2, . . . , cN 〉, where cost value costs(T).ci
corresponds to the i-th cost of using T .

In this paper, we consider N = 3 types of costs—travel
distance (i.e., costs(T).c1), travel time (i.e., costs(T).c2),
and fuel consumption (i.e., costs(T).c3), which are the three
most important factors while planning trips [21]. However, the
proposed techniques also apply to cases with arbitrary N .

Given a trajectory T , the travel distance of T can be
obtained by first map-matching the GPS records in T to
road segments and then summing up the lengths of the road
segments. The travel time of T can be obtained by computing
the difference between the timestamps of the last and first GPS
records in T . The fuel consumption of T can be derived from
the length and the average speed of the trajectory, which can be
derived from the GPS records in T , using appropriate vehicular
environmental impact models [9].

B. Modeling Driving Preferences

Definition 5: Given two travel costs of trajectory T , say
costs(T).ci and costs(T).cj , the preference ratio w.r.t. the
two travel costs is pri,j = costs(T).ci

costs(T).cj
.

Suppose costs(T) = 〈6.5 km, 13 min, 0.58 l〉, the prefer-
ence ratio w.r.t. the distance and travel time is pr1,2 = 6.5

13 .

Definition 6: A driver is associated with a driving prefer-
ence vector P = 〈p1, p2, . . . , pM 〉 that consists of M random
variables, where M =

(
N
2

)
and each random variable pi

describes the distribution of a preference ratio.

For example, when considering N = 3 travel costs, a
driver’s driving preference vector has M =

(
3
2

)
= 3 random

variables, which describe the distributions of the preference
ratios w.r.t. distance v.s. travel time, distance v.s. fuel con-
sumption, and travel time v.s. fuel consumption, respectively.

Given a driver’s historical trajectories, the driver’s driving
preference vector can be derived as follows. We consider a
preference ratio at a time. For each trajectory, the preference
ratio of the trajectory can be computed according to Defini-
tion 5. Thus, we obtain a collection of preference ratio values
from the driver’s all trajectories. Next, a random variable
describing the distribution of the values in the collection can
be obtained. Finally, M random variables corresponding to
the distributions of the M preference ratios become available,
which in turn construct the driver’s driving preference vector.

A Gaussian Mixture Model (GMM) is employed to de-
scribe the distribution of a random variable in the driving
preference vector P , because a GMM is capable of describing
any complex probability functions [3], [21]. Given a col-
lection of values, the GMM can be derived using existing
algorithms [19]. Thus, P is actually a sequence of M GMMs.

Definition 7: Given a driver’s driving preference vec-
tor P = 〈p1, p2, . . . , pM 〉, a Personalized Satisfaction
Score Function F quantifies the degree of satisfaction of
a trajectory T for the driver. In particular, F(T , P) =∑M
i=0

∫ T̂i+∆

T̂i−∆
pi(c)dc, where T̂i represents the preference ratio

of T w.r.t. pi, ∆ is a small real value to form a narrow ∆-
neighborhood [T̂i −∆, T̂i + ∆]. The higher value returned by
function F , the more satisfactory the trajectory is for the driver.

544

Authorized licensed use limited to: Central South University. Downloaded on January 11,2021 at 06:29:31 UTC from IEEE Xplore. Restrictions apply.

Assume we only consider two travel costs (i.e., fuel con-
sumption and travel time) and thus only one preference ratio in
driving preference vector P = 〈p1〉. Fig. 2 shows that the pdfs
of the preference ratio random variable p1 for two different
drivers driver1 and driver2 in our real trajectory data set.
Consider two trajectories T1 and T2 using two different routes
but connecting the same source-destination. We first compute
their corresponding preference ratios and construct their ∆-
neighborhoods I1 and I2, respectively, as shown in Fig. 2.
Clearly, for driver1, the route used by T1 is preferred than that
by T2 because F(T1, Pdriver1) > F(T2, Pdriver1). Similarly,
the route used by T2 is preferred by driver2.

(a) pdf of p1, driver1 (b) pdf of p1, driver2

Fig. 2. Evaluating Personalized Satisfaction Score Functions

C. Updating Driving Preferences

A driver’s driving preference vector typically does not keep
invariant, especially when considering a relatively long time
span. For example, when a driver’s financial situation changes,
e.g., having a high salary job after graduation from university,
the driver’s driving preference vector may be changed signifi-
cantly.

To timely update the random variables in a driver’s driving
preference vector, we try to identify when a driver’s driving
preference vector starts changing significantly. Once the driver
produces a new trajectory T , the trajectory is called signifi-
cantly different from the driver’s driving preference vector P if
its personalized satisfaction score is smaller than a threshold ξ,
i.e., F(P, T) < ξ. Here, threshold ξ is introduced to play a role
which is similar to the p-value in the conventional statistical
significance testing [8]. Once such a significantly different
trajectory is identified, we start accumulate the driver’s trajec-
tories and build a new driving preference vector P according
to the procedure described in Section II-B.

D. Problem Formulation

Definition 8: A Personalized Route Recommendation
(PRR) query, denoted as PRR(vs, vd, t, P), takes as input a
source vertex vs, a destination vertex vd, a departure time t,
and a driver’s driving preference vector P . The query returns
the shortest route in a reference graph. The reference graph
is a sub-graph of the road network, where the edges satisfy
the following two features: (1) the edges were traversed by
the trajectories whose drivers have driving preferences similar
to P and that went through from vs to vd and occurred at a
similar departure time t of a day; (2) an edge in the reference
graph is associated with a weight, where a lower weight value
indicates that more drivers prefer to use the edge.

The construction of reference graph is discussed in Sec-
tion V.

E. Framework Overview

Fig. 3 gives an overview of the framework for answering
personalized route recommendation queries. The framework
consists of three major modules, index construction, reference
trajectories retrieval, and personalized route recommendation.

Inverted

Trajectory Index

for Trajectories

Reference trajectories

retrieval

Spatial filter

Temporal filter

Index

Consturction
Personalized route

recommendation

Local route

computation

Global routes

computation
Preference filter

Grid Index for

Road Network

Fig. 3. Framework Overview

The index construction module is responsible for managing
the trajectories and the road network where the trajectories oc-
curred. It builds an inverted trajectory index for the trajectories
and a grid index for the road network.

Given the input parameters of a PRR query (i.e., a source, a
destination, a departure time, and a driving preference vector),
the reference trajectories retrieval module applies various filers,
including a spatial filter, a temporal filter, and a preference
filter, to retrieval a set of reference trajectories that are
highly relevant to the query. When retrieving the reference
trajectories, the two indexes built in the index construction
module are used to facilitate the retrieving process.

The personalized route recommendation takes as input
the reference trajectories returned by the trajectories retrieval
module. Two strategies, local route computation and global
route computation, are applied on the reference trajectories to
compute the personalized route satisfying the driving prefer-
ence vector.

III. INDEX CONSTRUCTION

A. Indexing the Trajectories

Recall that map matching [17] is able to map a GPS
record in a trajectory to a specific location on an edge in
the underlying road network. Thus, map matching associates
trajectories with edges in the road network.

A common operation in the later reference trajectories
retrieval model is to retrieve all the trajectories that occurred
on a given edge. To efficiently support this operation, an
Inverted Trajectory Index (ITI) is constructed to record the
relationships between edges and the trajectories occurred on
the edges. The ITI contains a set of entries where each entry
corresponds to an edge. The entry is in the form of 〈e, tr list〉,
where e indicates an edge and tr list is a trajectory posting
list that contains the trajectories that occurred on edge e and
the trajectories are ordered based on the timestamps of the first
GPS records on edge e in the trajectories.

A single scan on the map-matched trajectories is able
to construct the ITI . Since the number of trajectories may

545

Authorized licensed use limited to: Central South University. Downloaded on January 11,2021 at 06:29:31 UTC from IEEE Xplore. Restrictions apply.

be extremely large, it is necessary to design an external
memory based indexing construction algorithm, as shown in
Algorithm 1.

Algorithm 1: ITI Construction
Input: Trajectories file: TrajFile;
Output: ITI file: f ;

1 ITI file: f←new file;
2 int n←0;
3 while Blocks in TrajFile have not been fully processed do
4 Read next block b from TrajFile;
5 Parse the trajectories in block b into 〈edge, traj pointer〉

pairs;
6 Combine the pairs with the same edge into a trajectory

posting list tr list ;
7 Build an in-memory ITI index ITI n and append ITI n

to ITI file f ;
8 n← n+ 1;

9 Return f ;

Algorithm 1 starts reading in blocks one by one from
file TrajFile that contains all the map-matched trajectories
(lines 3-4). After loading a block of trajectories, the trajectories
are parsed into a set of 〈edge, traj pointer〉 pairs, where
edge is an edge that is used by a trajectory and traj pointer
is a pointer to the trajectory (line 5). Note that the pointer
traj pointer points to the first GPS record on edge in the
trajectory instead of the beginning of the trajectory (i.e., the
first GPS record in the trajectory). The pairs with the same
edge are grouped together and a trajectory posting list tr list
that contains the edge’s traj pointer is created (line 6). Thus,
an in-memory ITI index for the current block ITI n can be
built. Next, ITI n is appended to the ITI file f (line 7). Finally,
the ITI file f is constructed and returned (line 9).

B. Indexing the Road Network

A uniform grid index is employed to index the edges in the
road network. Cells in the grid are squares, and the width of
a cell is governed by a parameter c. The grid index splits the
entire road network into x× y cells. The grid index associates
each cell with an entry in the form of

〈cell , edge set〉, (1)

where cell indicates a grid cell and edge set is a set of edges
that are inside the cell. Edge e is inside a cell ci if its starting
vertex e.s or its ending vertex e.d is inside the cell, denoted
as e ∈ ci.

IV. REFERENCE TRAJECTORIES RETRIEVAL

Drivers’ intelligence on route selection is hidden in the
drivers’ historical trajectories. To answer a PRR query, it is
of interest to identify a set of reference trajectories that may
be highly relevant to the PRR query to reveal the hidden
intelligence.

Given a PRR query, it is neither necessary nor efficient to
consider all historical trajectories. For example, when the query
concerns the southern part of a city, the trajectories occurred
in the northern part of the city may not be very useful. In
this section, we define a few filters to retrieve the reference
trajectories that are highly relevant to the given query.

Assume that we consider a PRR query PRR(vs, vd, t, P).
We apply the following filters sequentially.

Spatial Filter. If a historical trajectory visited through
the starting vertex vs and then the ending vertex vd, it may
provide important driving intelligence for the query. Thus,
such trajectories are considered as reference trajectories. Based
on the above, a spatial filter only keeps the trajectories that
sequentially visit vertices vs and vd and filters out those
trajectories that do not.

Given a vertex, it is possible to get a set of edges that
start from the vertex or end at the vertex. Let starting edge
set Es = {e|e.s = vs} denote the set of edges that start from
vertex vs and ending edge set Ed = {e|e.d = vd} denote the
set of edges that end at vertex vd.

Recall the definition of the ITI in Section III-A, given an
edge, the ITI is able to efficiently return a set of trajectories
that occurred on the edge. Let edge es ∈ Es be an edge from
the starting edge set and edge ed ∈ Ed be an edge from the
ending edge set, respectively. Using the ITI , we have ITI (es)
and ITI (ed) that contain the trajectories occurred on edges es
and ed, respectively.

Based on ITI (es) and ITI (ed), it is not difficult to identify
the trajectories that sequentially visited vs and vd. Such a
trajectory T must be in the intersection between ITI (es) and
ITI (ed) (i.e., T ∈ ITI (es)∩ITI (ed)). Further, the timestamp
on vs should be earlier than that on vd (i.e., T (vs).t < T (vd).t
where T (v).t indicates the timestamp when trajectory T
visited vertex v).

Temporal Filter. Since traffic is time-dependent, we con-
sider trajectories that occurred at a similar time of a day to the
departure time t of the PRR query. The trajectories occurred
closer to the departure time t of the PRR query should provide
more accurate driving intelligence than do those trajectories
occurred further from t. Hence, we partition a day into m
slots and the length of each slot is 24

m hours. Further, we also
distinguish weekdays from weekends. Let slot IPRR cover the
trip starting time t of the PRR query and slot IT cover the time
that trajectory T visited the source vertex vs. If a trajectory
T does not satisfy |IPRR − IT | 6 TFI , the trajectory is
filtered out by the temporal filter, where TFI is a configurable
threshold.

Preference Filter. Drivers with different driving prefer-
ences may choose quite different routes. Thus, we try to only
keep the trajectories that are made by the drivers who have
similar driving preference vectors to the preference vector
provided by the PRR query. To achieve this, we evaluate the
satisfaction score of each trajectory T that is not filtered yet
using the satisfaction score function F . The trajectories with
the top-k highest scores are kept.

Note that the preference filter can be skipped if the driving
preference vector in the PRR query is not (or can not be)
specified, e.g., when a driver uses the PPR service for the first
few times.

V. PERSONALIZED ROUTE RECOMMENDATION

After retrieving the reference trajectories, the personalized
route recommendation module recommends routes based on

546

Authorized licensed use limited to: Central South University. Downloaded on January 11,2021 at 06:29:31 UTC from IEEE Xplore. Restrictions apply.

the reference trajectories. The recommendation process distin-
guishes two different scenarios based on whether the set of
the reference trajectories is empty. If the set is not empty, a
local route recommendation algorithm is provided; otherwise,
a global route recommendation algorithm is offered.

Both local and global route recommendation follows a
generic procedure. First, they construct a reference graph.
Next, they assign weights to the constructed reference graph.
Finally, they return the route that has the minimum weight as
the personalized route for the driver.

A. Local Route Recommendation

When the set of reference trajectories is not empty, we first
build a local reference graph using the reference trajectories.
Next, we assign weights to the local reference graph based on
how the graph was used by the reference trajectories. Finally, a
shortest path search is conducted on the local reference graph
to recommend the personalized routes.

1) Local Reference Graph Construction: A local reference
graph Gref = (Vref , Eref) is a sub-graph of the road network
graph G, where Vref ⊆ G.V and Eref ⊆ G.E. The local
reference graph is composed of the vertices and edges that
are traversed by the reference trajectories. Specifically, if a
reference trajectory traversed an edge (vi, vj), vertices vi and
vj are added into Vref and edge (vi, vj) is added into Eref .

The local reference graph compactly abstracts the original
road network and keeps the most relevant vertices and edges
because the reference trajectories consider the spatial, tempo-
ral, and preference contexts of the PRR query. Note that a
route search on the local reference graph guarantees to find a
route from the source vertex to the destination vertex, because
the reference trajectory set is not empty.

2) Weight Computation: Although the local reference
graph only contains the edges that are highly relevant to the
PRR query, the edges are not equally important. For instance,
an edge used by many reference trajectories is more popular
than an edge used by only one reference trajectory, meaning
that driver who issued the PRR query should prefer to use
the former edge. To this end, we assign each edge a weight
reflecting the relative importance of the edge.

Rational of Movement Modeling: The modeling of move-
ments of vehicles on a road network as stochastic processes
is well studied in the transportation field [7]. In particular, the
modeling of vehicle movements as Markov processes is an
easy-to-use and effective approach [22]. Thus, we model the
movements of the vehicles in the reference trajectories as a
first-order Markov chain. Specifically, we treat each edge as a
state. The transition from a state to another state indicates that a
movement form an edge to another edge and the corresponding
transition probability can be derived based on the reference
trajectories. The stationary distribution on each state (i.e., an
edge) indicates the probability that a vehicle travels on the edge
if the vehicle is driven by a driver with preference PRR.P at
time PRR.t from PRR.vs to PRR.vd. Thus, the stationary
distribution value can be used to measure the popularity of the
edge.

Since PageRank values on a graph representing the state
transition relationship are actually the stationary distribution

values [14], we construct a dual graph that records the state
transition relationship and compute PageRank values on the
dual graph.

Dual Graph Construction: A dual graph Gref =
(V ref , Eref) has a vertex set V ref and an edge set Eref . Each
vertex v ∈ V ref corresponds to an edge in the local reference
graph Gref and each edge e ∈ Eref corresponds to a vertex
in the local reference graph Gref . To avoid ambiguity, we use
the terms vertex and edge and notation v and e when referring
to the local reference graph Gref and use dual vertex and
reference edges and notation v and e when referring to the
daul graph Gref . A function δ : V ref ∪ Eref → Vref ∪ Eref

records the relationships between dual vertices and edges and
between dual edges and vertices .

Fig. 4(a) shows a local reference graph and Fig. 4(b)
shows its dual graph. For example, we have δ(AB) = (A,B)
indicating that dual vertex AB corresponds to edge (A,B),
and δ((AB,BF)) = B indicating that dual edge (AB,BF)
corresponds to vertex B. In addition, two additional dual
vertices (A′ and D′) are created in the dual graph to represent
the source and the destination, respectively.

A

B C

D

E F

(a) Local reference graph

AB BC CD

AE EF FD

'A 'DBF

(b) Dual graph

Fig. 4. Local reference graph and dual graph

Next, the weights of dual edges in Gref is computed based
on reference trajectories. Given a dual edge (vi, vj), its weight
is computed as

|RefTraj (vi, vj)|∑
vx∈OUT(vi)

|RefTraj (vi, vx)|
,

where RefTraj (vi, vx) returns the set of reference trajectories
that traversed edges δ(vi) and δ(vj) consecutively, | · | returns
the cardinality of a set, and OUT (vi) = {vx|(vi, vx) ∈
ERef }. The weight of a dual edge (vi, vj) actually refers to
the transition probability from edge δ(vi) to edge δ(vj).

After getting the weights of dual edges, the construction of
the dual graph completes and classical PageRank computation
algorithm [14] can be conducted on the dual graph. In the
beginning, the PageRank value of each dual vertex is set
to 1
|V ref |

. The PageRank values of the dual vertices can be
computed according to Equation 2 in an iterative manner until
the PageRank values converge.

PageRank (k)(vi) =
∑

vx∈IN (vi)

PageRank (k−1)(vx)

OUT (vx)
(2)

where PageRank (k)(vi) is the PageRank value of a dual vertex
vi in the k-th iteration and IN (vi) = {vx|(vx, vi) ∈ ERef }.

The PageRank value of a dual vertex vi, i.e.,
PageRank(vi), actually indicates the probability that a
vehicle travels on edge δ(vi) if the vehicle is driven by a

547

Authorized licensed use limited to: Central South University. Downloaded on January 11,2021 at 06:29:31 UTC from IEEE Xplore. Restrictions apply.

driver with preference PRR.P at time PRR.t from PRR.vs
to PRR.vd. The higher the PageRank value PageRank(vi)
is, the higher probability the edge δ(vi) may be used by the
driver.

To make an edge with a higher PageRank value more likely
be chosen in a shortest path finding algorithm, the weight of
the edge should be small. To this end, the reciprocal of the
PageRank value is employed as the weight of the edge—the
weight of edge e is set to 1

PageRank(vi)
where δ(vi) = e.

3) Local Route Recommendation: Local route recommen-
dation is solved by finding the shortest route on the local
reference graph. The shortest route on the local reference graph
actually uses the edges that have high chances being used
by users with similar driving preference to PRR.P , when
they travel from PRR.vs to PRR.vd at around time PRR.t.
Algorithm 2 describes the whole procedure of local route
recommendation.

Algorithm 2: Local Route Recommendation
Input: ReferenceTrajectorySet: RTraj ; PRRQuery: PRR;
Output: The Recommended Route: R

1 Construct local reference graph Gref based on RTraj ;
2 Construct dual graph Gref based on Gref ;
3 Compute the PageRank values of dual vertices in Gref

according to Equation 2;
4 For each edge e ∈ Gref .Eref , assign value 1

PageRank(vi)
to

edge e if δ(vi) = e;
5 R ← the shortest route between PRR.vs and PRR.vd on the

local reference graph Gref ;
6 return R;

B. Global Route Recommendation

Global route recommendation considers the scenario where
the set of reference trajectories is empty. In this scenario, a
set of transfer edges which are first identified as intermediate
destinations such that non-empty sets of reference trajectories
exist between the source and an intermediate destination,
between two intermediate destinations, and between an inter-
mediate destination to the destination. Next, the sequence of
intermediate destinations that best satisfies the driver’s route
request is identified and a global reference graph is constructed
based on the intermediate destinations. Finally, edge weights
are assigned and the shortest route is returned in a way similar
to that of local route recommendation.

1) Discover Transfer Edges: Empty reference trajectory set
mostly happens when the source and the destination are further
away. We propose a sweep-and-expand process to discover
transfer edges as intermediate destinations. The process con-
siders a sweep line that is a directed line segment connecting
from the source to the destination. The sweep line indicates
the ideal direction that a route should follow from the source
to the destination (i.e., a straight line in a Euclidean space).
Fig. 5 shows that the sweep line from vs to vd.

Next, we decide the directions of the sweep and the expand
processes, respectively. We project the sweep line onto the x-
axis and y-axis, respectively. If the projected line on the x-axis
(or y-axis) is longer, the sweep process follows the x-axis (or

y-axis), while the expand process follows the y-axis (or x-
axis). For example, Fig. 5 shows that the x-axis projection of
the sweep line is longer. Thus, the sweep process follows the
x-axis and is from west to east, because the source vertex vs
is on the west side of the destination vertex vd. The expand
process follows the y-axis and expands to the north and the
south simultaneously.

vs

vd

0

+1

-1

0

+1

-1

0

+1

-1

sweep

e
x
p
a
n
d

e
x
p
a
n
d

A

x

y

-2

+2

TE1

TE2

TE3

TE4

TE5

TE6

TE7

TE8

Fig. 5. Discovering Transfer Edges

Recall that a uniform grid index is built to index the edges
in the road network. The boundaries of the grid cells must
intersect with the sweep line. The intuition of the sweep-
and-expand process is that if the route connects from the
source to the destination, it must use edges that intersect these
boundaries. We choose the edges that intersect the boundaries
and are close to the ideal direction of the route as transfer
edges. Consider the case shown in Fig. 5. Since the sweep
process follows the x-axis, we consider the intersections of the
vertical cell boundaries and the sweep line. Analogously, when
the sweep process follows the y-axis, we should consider the
intersections of the horizontal cell boundaries and the sweep
line.

From each intersection (e.g., A in Fig. 5), we expand to
check cells on both directions (i.e., north and south). The cell
whose left boundary covers the intersection (the cell with label
“0” in Fig. 5), and the cells that are immediately upper (the
cell with label “+1” in Fig. 5) and lower (the cell with label
“-1” in Fig. 5) than the aforementioned cell are chosen as
candidates. The edges that intersect the left vertical boundaries
of the candidate cells are chosen as candidate transfer edges.

Given a candidate transfer edge cte), we consider two
vertices. The first one is the ending vertex of the candidate
transfer edge and the second one is the ending vertex of a
candidate transfer edge in the previous sweep step. If this is
the first sweep step, the second one is the source vertex vs.
Next, if the set of reference trajectories of the two vertices is
non-empty, we keep the candidate transfer edge cte; otherwise,
the candidate transfer edge is dropped. If none of the candidate
transfer edges is kept in the end, we expand to check more
cells and repeat the above procedure. For example, on the 4-th
vertical boundary, five cells (i.e., the cells with labels “-2”, “-
1”, “0”, “+1”, “+2” in the fourth column of cells in Fig. 5) are
considered and a transfer edge TE 6 is chosen in cell “+2”.

Note that the transfer edge discovering process can be ter-
minated earlier if there exists a non-empty reference trajectory
set when considering the ending vertex of a candidate transfer
edge and the destination vertex vd. For instance, if there are a
few reference trajectories between the ending vertex of transfer

548

Authorized licensed use limited to: Central South University. Downloaded on January 11,2021 at 06:29:31 UTC from IEEE Xplore. Restrictions apply.

edge TE 6 and vd in Fig. 5, then the following two columns of
cells can be skipped. We call this strategy early termination.

When applying the temporal filter to retrieve reference
trajectories in an intermediate step, the departure time from
a transfer edge cte needs to be progressively updated. The
departure time on a transfer edge is actually an interval.
The lower and upper bounds of the interval are the earliest
and latest arrival times of the reference trajectories from the
previous transfer edge.

2) Finding the Most Likely Transfer Edge Sequence:
After obtaining the transfer edges between the source and the
destination, we need to identify the most likely sequence of
transfer edges. To this end, we transfer the problem into a
decoding problem of a hidden Markov model (HMM) [3].
The key is then to construct an appropriate HMM based on
the transfer edges. Based on the HMM, a modified Viterbi
algorithm is proposed to identify the most likely transfer edge
sequence.

Modeling as an HMM: The precondition of using an
HMM is to identify a set of states S. Here, we consider
each transfer edge as a state. In addition, we also include
the source and the destination as states. Thus, we have S =
{vs, vd, TE1, TE2, . . . , TE6} for the case shown in Fig. 5.
The transition probability between two states indicate that the
probability of reference trajectories going from one transfer
edge or the source to another transfer edge or the destination.
The output probability of a state is ignored, because each
state can only output the corresponding transfer edge, the
source, or the destination itself. Formally, we define an HMM
λ = {S,M, π}, where

• S is a state set where each state corresponds to a
transfer edge, the source, or the destination.

• M = {mi,j}, 1 6 i, j 6 |S| is a transition probability
matrix, where mi,j = TP(si, sj) is the probability of
transferring from state si to state sj .

• π = {πi}, 1 6 i 6 |S| is an initial probability vector.
πi = IP(si) is the probability of the recommended
route starting with the i-th state.

Next, we consider X stages, where the first (or the last)
stage corresponds to the start (or the end) of the trip. In other
words, in the the first (or the last) stage, only the state that
corresponds to the source (or the destination) is allowed. Each
of the remaining stages corresponds to a boundary of cells. In
such a stage, a set of states that corresponds to the transfer
edges intersected with the boundary are allowed. For instance,
Fig. 6 shows that there are five stages for the case shown in
Fig. 5 and there are 3, 2, and 1 possible transfer edges in the
2nd, 3rd, and 4th stages.

Based on the above, identifying the most likely transfer
edge sequence, denoted as T E = 〈te1, te2, . . . , teX〉 (where
tei ∈ S, 1 6 i 6 X), is to solve Equation 3.

T E = arg max
T E∈TE

P (T E|λ) = arg max
T S∈TE

IP(te1)
N∏

j=2

TP(tej−1, tej) (3)

where the TE represents all possible transfer edge sequences.

Deriving π and M: The initial probability of a state is
the probability of the recommended route beginning with the

s

d

1

2

3

4

5

6

Fig. 6. Selecting the Most Likely Transfer Edge Sequence

state. Thus, if the i-th state corresponds to the source, πi is
set to 1; otherwise, πi is set to 0.

The transition probability mi,j = TP(si, sj) is defined in
Equation 4.

mi,j =

{ |RefTraj (si,sj)|
|RefTraj (si)| if si and sj are in two adjacent stages

0 otherwise
(4)

If si and sj are not in two adjacent stages, the transition
probability from si to sj is zero. For example, the transition
probability from TE1 in stage 2 to TE6 in stage 4 is zero. If
si and sj are in two adjacent stages, the transition probability
equals to the number of reference trajectories that visited both
si and sj divided by the number of reference trajectories that
visited si.

Solving Equation 3: We propose a modified Viterbi algo-
rithm to solve Equation 3. Let δx(si) denote the probability of
the sequence of transfer edges at stage x is in state si, where
1 6 x 6 X and 1 6 i 6 |S|. We have

δ1(si) = IP (si) (5)
δx(si) = max

sj∈S
δx−1(sj) ·mj,i (6)

Meanwhile, when 2 6 x 6 X , we also record φx(si) =
arg maxsj∈S δx−1(sj) ·mj,i, i.e., the state in stage x− 1 that
makes δx(si) maximized.

In the last stage, i.e., stage X , the state arg maxsi∈S δX(si)
is chosen as the state in the stage X . From this state, the states
in the previous stages can be backtracked using φx(·).

In this manner, we can guarantee that the found sequence
satisfies the Equation 3 and is optimal. Hence, it always
outperforms the other sequences and the benefit of it becomes
more significant when planning longer routes.

3) Global Route Recommendation: Solving Equation 3
produces the most likely transfer edge sequence T E =
〈te1, te2, . . . , teX〉, where the first and the last elements te1

and teX correspond to the source and the destination, and
the remaining elements correspond a transfer edge. Between
a pair of elements, say teiandtej , the reference trajectory
set is non-empty, and thus we are able to construct a local
reference graph. Finally, the union of all local reference graphs
is regarded as the global reference graph. PageRank is con-
ducted on the global reference graph using the corresponding
reference trajectories, and edge weights are assigned using
the reciprocal of the PageRank values. Finally, the shortest
route is recommended as the personalized route to the driver.
Algorithm 3 describes the global route recommendation.

549

Authorized licensed use limited to: Central South University. Downloaded on January 11,2021 at 06:29:31 UTC from IEEE Xplore. Restrictions apply.

Algorithm 3: Global Route Recommendation
Input: PRRQuery: PRR;
Output: The Recommended Route: R

1 Identify transfer edges using the grid index;
2 Build the HMM λ = {S,M, π};
3 Identify the most likely transfer edge sequence T E ;
4 Construct the global reference graph and assign edge weights;
5 R ← the shortest route between PRR.vs and PRR.vd on the

global reference graph; return R;

VI. EMPIRICAL STUDIES

A. Experimental Setup

GPS records: We use more than 50 billion GPS records
collected from 52,211 taxis in Beijing, during 2012-09-30 to
2012-11-30. The sampling rate of the GPS records is at least
0.2 Hz—one GPS record is collected in every no more than
5 seconds. A map-matching algorithm [17] is employed to
determine the route used by a trajectory2.

Road network: We consider the road network of Beijing
within the 6-th ring road because most of the GPS records are
collected within the 6-th ring road. The road network is with
28,342 vertices and 38,577 edges and can be bounded by a
60 km×60 km square region.

Trajectories: We treat each taxi trip as a trajectory, where
a taxi trip starts when a passenger got in the taxi and ends
when the passenger got off the taxi. The information of when
a passenger got in and got off a taxi is also recorded in the
GPS records. After that, we get 32,379,248 trajectories in total.
We select 25%, 50%, 75%, and 100% of the all trajectories
to construct four trajectory sets with varying sizes, denoted as
TR1, TR2, TR3, and TR4.

Travel Costs: We consider three commonly used travel
costs—travel distance (TD) travel time (TT) and fuel consump-
tion (FC). The travel distance of a trajectory is the sum of the
lengths of the edges in the trajectory. The lengths of all edges
are recorded in the road network. The travel time of a trajectory
is obtained as the difference between the corresponding time
points of the last and first GPS records of the trajectory.
We use the SIDRA-running model [4] to estimate the fuel
consumption based on the length and the average speed of
a trajectory. A recent benchmark [9] indicates that SIDRA-
running is appropriate for this purpose.

Parameters: We vary important parameters used in the
paper. Table I lists these parameters where the default values
are shown in bold. Default values are used unless stated
otherwise. Parameter TFI is the threshold used in the temporal
filter (in Section IV), parameter ξ is the threshold used when
updating the driving preference vectors (in Section II-C), and
parameter c denotes the width of a cell in the grid index
(in Section III). Parameters EDLR and EDGR denote the
Euclidean distance between the source and the destination for
local route recommendation and global route recommendation,

2Since the speed limit of most roads in Beijing within the 6-th ring road is
70 km/h, the distances between consecutive GPS records are typically within
5 · 70·10

3

3600
≈ 97 meters. The average length of a road segment in Beijing is

around 200 meters, which indicates that there typically exists at least one or
two GPS records per road segment.

respectively. Parameter TR represents different historical tra-
jectory data sets.

TABLE I. PARAMETER SETTINGS

Parameters Values
TFI 15, 20, 25, 30 (minutes)

c 1, 2, 3, 4, 5, 6 (km)
ξ 0.1,0.2,0.3,0.4

EDLR 2, 2.5, 3, 3.5, 4 (km)
EDGR 10, 20, 40, 60 (km)
TR TR1, TR2, TR3, TR4

Other used parameters are described as follows. Parameter
∆ used in evaluating personalized satisfaction score function in
Definition 7 is set to |rmax−rmin|

50 , where rmax and rmin refer
to the maximum and minimum ratios obtained from historical
trajectories. Top-5 trajectories are selected by the preference
filter, i.e., setting k to 5.

Implementation Details: All algorithms are implemented
in Python 2.7.6. A computer with Windows 8 Professional
operating system, a 2.5GHZ i5-3210M CPU, and 16 GB main
memory is used for all experiments.

B. Driving Preference Modeling and Update

To test the effectiveness of proposed driving preference
modeling and update methods, we randomly choose 500 taxi
drivers. Each of the driver has at least 500 trajectories. For
each driver, we initialize a driving preference vector using the
driver’s trajectories that are generated in the first month, i.e.,
2012-09-30 to 2012-10-31.

Since we consider three travel costs, i.e., TD, TT, and FC,
the driving preference vector P = 〈p1, p2, p3〉 is composed of
three random variables, where random variables p1, p2, and
p3 indicate the distributions of the preference ratios w.r.t. TD

TT ,
FC
TD , and FC

TT , respectively.

Fig. 7 shows two drivers’ driving preferences. In particular,
Figs. 7(a) and 7(b) show the distributions of random variables
p1 and p2 of the first driver, and Figs. 7(c) and 7(d) show
the distributions of random variables p1 and p2 of the second
driver. The distributions of p3 for both drivers are omitted due
to the space limitation. Comparing Fig. 7(a) and Fig. 7(c), it
suggests that the second driver drive more aggressively (i.e.
the average speed is relatively high) than the first driver.

To evaluate the accuracy of the obtained driving preference
vectors, we split a driver’s trajectories into training trajecto-
ries and testing trajectories. Specifically, we sort a driver’s
trajectories according to when the trajectories occurred. The
training trajectory sets contain the driver’s first 20%, 30%,
40%, and 50% of the trajectories, respectively; and the re-
maining trajectories are the testing trajectories. We compute
two preference vectors Ptrain and Ptest using the training
and testing trajectories, respectively. The differences between
two preference vectors (Ptrain and Ptest) are computed by
KLDist = 1

M ·
∑M
i=1KL(GMM pi∈Ptrain ||GMM pi∈Ptest),

where KL(GMM 1||GMM 2) indicates the Kullback -Leibler
divergence [13] between two GMMs. The smaller the KLDist
value between the two preference vectors is, the more accurate
the derived driving preference vector is.

Fig. 8(a) shows the correlation between the KLDist values
and the sizes of the training trajectories, on all driver and

550

Authorized licensed use limited to: Central South University. Downloaded on January 11,2021 at 06:29:31 UTC from IEEE Xplore. Restrictions apply.

(a) p1, TD
TT , driver1 (b) p2, FC

TD , driver1 (c) p1, TD
TT , driver2 (d) p2, FC

TD , driver2

Fig. 7. Driving Preference Modelling

two specific drivers, driver1 and driver2. On average, the
more training trajectories are considered, the lower KLDist
values are obtained, which suggests that the accuracy of
the driving preference modeling increases as the number of
training trajectories increases. See the cases with “all” and
“driver1” in Fig. 8(a). This can be regarded as a naive driving
preference update strategy that driving preference vectors are
updated when new trajectories are accumulated. Please note
that Fig. 8(a) doesn’t use the update strategy thus ξ is not
specified. It shows that simply increasing the number of train-
ing trajectories cannot always effectively improve KLDist .

However, Fig. 8(a) also suggests that the accuracy of
driver2’s driving preference vector cannot be improved sig-
nificantly as the number of the driver’s trajectories increase.
This may be due to the fact that driver2’s driving preference
changes significantly in the middle. Hence, it is necessary to
detect when the driver2’s driving preference starts changing
significantly, and re-initialize a driving preference vector ac-
cording to the strategy described in Section II-C. Fig. 8(b)
shows the relationship between the parameter ξ and the
KLDist values. After updating the GMM, the KLDist values
significantly decrease, indicating that the proposed driving
preference update strategy is much more effective than the
naive update strategy. A smaller ξ can lead to smaller error
values, meaning that we are able to successfully detect small
driving preference changes. But a small ξ also means that we
may need to update the driving preference frequently and is at
the risk of over-fitting.

 0

 0.04

 0.08

 0.12

 0.16

20 30 40 50

K
L

D
is

t

Size of training sets(*100%)

average
driver1

driver2

(a) Varying Sizes of Training Sets

 0

 0.04

 0.08

 0.12

 0.16

0.4 0.3 0.2 0.1

K
L

D
is

t

ξ

average
driver1

driver2

(b) Varying ξ

Fig. 8. Driving Preference Update

Note that the driving preference vector P is an input
parameter of a PRR query, which is only loosely coupled with
the PRR query processing methods. That is, if other algorithms
that are able to model and update the driving preference

vectors more accurately than do the algorithms proposed in
Sections II-B and II-C, they can be applied directly without
changing the PRR query processing methods.

C. Efficiency Study

Local Route Recommendation: We study the efficiency
of processing a PRR query that only consists local route
recommendation. We choose 5 groups of source-destination
pairs. In each group, we choose 50 source-destination pairs
and the Euclidean distances between the sources and the
destinations are with a certain distance EDLR (i.e., 2 km,
2.5 km, 3 km, 3.5 km, 4 km, respectively, according to Table I).
For each group, we generate a PRR query for each source-
destination pair, with a randomly generated departure time and
a randomly chosen taxi driver’s preference vector.

Figure 9(a) reports the average run-time of local route
recommendation in different settings. The average run-time
decreases as the distance between the source and the desti-
nation increases. This seems counter-intuitive but it is because
we only consider the local reference graph when conducting
local route recommendation. And a local reference graph is
much smaller compared to the original road network. When the
source and the destination are further away, the corresponding
reference trajectory set is small which also makes a small
local reference graph. PageRank computation and shortest
route finding on a small local reference graph is very fast. On
average, local route recommendation takes less than 180 ms,
which suggests that it is efficient enough to be able to provide
real-time local route recommendation services.

 0

 30

 60

 90

 120

 150

 2 2.5 3 3.5 4

ru
n

n
in

g
 t

im
e

(m
s)

EDLR (km)

PRR Dijkstra

(a) Varying EDLR

 0

 60

 120

 180

TR1 TR2 TR3 TR4

R
u

n
n

in
g

 T
im

e
 (

m
s
)

Reference-Trajectory-Retrieval
PageRank

Shorest-Route-on-Reference-Graph

(b) Varying TR

Fig. 9. Local Route Recommendation

To provide a better understanding on how efficient the
local route recommendation is, we also report on the average

551

Authorized licensed use limited to: Central South University. Downloaded on January 11,2021 at 06:29:31 UTC from IEEE Xplore. Restrictions apply.

run-time of identifying the shortest route using the Dijkstra’s
algorithm in Figure 9(a). The Dijkstra’s algorithm takes longer
run-time as the distance between the source and the destination
increases, because more vertices and edges in the road network
need to be explored. Please note that in the last setting, i.e.,
when the source and the destination are located around 4 km,
the Dijkstra’s algorithm takes even longer average run-time
than does the local route recommendation.

To further investigate how the run-time of the local route
recommendation distributes, we report average run-time on
each step in Figure 9(b). The PageRank computation step costs
the most run-time since it requires many iterations to converge.
The route computation time is small because it is conducted
on a small local reference graph.

We also vary the sizes of the trajectory data sets. As the
number of trajectory grows (form TR1 to TR4), the run-time
of the local route computation only slowly increases (from
129 ms to 176 ms). This is because the number of reference
trajectories grows as more trajectories are considered, thus
resulting a larger local reference graph. Nevertheless, when
the biggest trajectory set TR4 with all trajectories is used,
the local route recommendation can still finish within a short
time (i.e., 176 ms on average), which suggests that local route
recommendation can be answered in interactive time.

Global Route Recommendation: Global route Recom-
mendation is invoked when there are no reference trajectory
between the source and the destination. This mainly happens
when the source and the destination are further away. Thus,
in this set of experiments, we choose source-destination pairs
that are at least 10 km away from each other. In particular, we
choose 4 groups of source-destination pairs. In each group, We
choose 50 source-destination pairs and the Euclidean distances
between the sources and the destinations are with a certain
distance EDGR (i.e., 10 km, 20 km, 40 km, 60 km according
to Table I). Note that 60 km is a fairly long distance inside a
city, even in a metropolis like Beijing. Similar to the local route
recommendation, for each group, we generate a PRR query
for each source-destination pair, with a randomly generated
departure time and a randomly chosen taxi driver’s preference.

Figure 10(a) shows the run-time while varying the distance
between the source and the destination. It suggests that (1)
the route computation consisting of the three common steps
takes the most considerable amount of time, especially the
PageRank step; (2) discovering transfer edges and deciding
the most likely transfer edge sequence are quite efficient; (3)
global route recommendation is scalable as the transfer edge
sequence normally contains no more than ten transfer edges
in a metropolis due to ”early termination”. When EDGR is
60 km, the runtime is less than 1.2 seconds, which is sufficient
for on-line use.

Next, we evaluate the effect of the sizes of trajectory sets.
Counter-intuitively, the average global route computation run-
time decreases when the number of trajectories grows, as
shown in Figure 10(b). The reason is as follows. Due to the
capability of early termination offered by the transfer edge
discovery procedure, the global route computation can often be
conducted with examining only the first few cells that are close
to the source in the grid index, especially when the number
of historical trajectories is large enough. Thus, the number

 0

 300

 600

 900

 1200

10 20 40 60

R
u

n
n

in
g

 T
im

e
 (

m
s
)

EDGR (km)

Discover-TE
Viterbi

Route-Computation

(a) Varying EDGR

 0

 200

 400

 600

TR1 TR2 TR3 TR4

R
u

n
n

in
g

 T
im

e
 (

m
s
)

Discover-TE
Viterbi

Route-Computation

(b) Varying TR

Fig. 10. Global Route Recommendation

of involved edges is greatly reduced. Accordingly, the overall
global route computation run-time decreases as the number
of historical trajectories grows. Please notice that the route-
computation contains the three steps same as the local route
computation.

To summarize, a PRR query, no matter it involves local or
global route recommendation, can be returned within 1 second.
This suggests that the proposed PRR query processing method
is efficient and is able to provide online service.

Effects of TFI and c: Fig. 11(a) depicts the effect of
threshold TFI used in the temporal filters. Using a larger TFI
significantly increases the number of reference trajectories.
However, the increased number of reference trajectories does
not significantly increase the F-value (they are all above 0.85).
Further, 15-minute is often regarded as the minimal period that
traffic can change substantially in the transportation research
area [20]. Hence, we use TFI = 15 minutes as default settings.

 45

 75

 105

 15 20 25 30
 0

 0.25

 0.5

 0.75

 1

R
e

fe
re

n
c
e

 T
ra

je
c
to

ry
 N

u
m

b
e

r

N
o

rm
a

liz
e

d
 F

-v
a

lu
e

TFI (min)

reference trajectory number

Normalized F-value

(a) Varying TFI

 0

 400

 800

 1200

1 2 3 4 5 6

R
u

n
n

in
g

 T
im

e
 (

m
s
)

c (km)

Discover-TE
Viterbi

Route-Computation

(b) Varying c

Fig. 11. Varying Parameters

We also vary parameter c that is the width of a grid cell
and report the results in Fig. 11(b). The run-time decreases
when c increases from 1 km to 4 km. Later, the run-time
starts increasing again when c is greater than 5 km. The reason
is two-fold. First, a smaller cell often leads to more sweep-
and-expand processes included in the transfer edge discovery
phase. Accordingly, more local route recommendations are
invoked which take more time. Second, more edges need to
be loaded from a larger cell when checking whether they are
intersected with cell boundaries, which is also time-consuming.
Fig. 11(b) suggests that setting c to 5 km is the optimal setting
for our data set because the global route recommendation has
the least average run-time. Thus, we choose 5 km as the default
setting as shown in Table I.

552

Authorized licensed use limited to: Central South University. Downloaded on January 11,2021 at 06:29:31 UTC from IEEE Xplore. Restrictions apply.

D. Effectiveness Study

To study the effectiveness of the PRR queries, we compare
the route recommended by PRR queries with the routes offered
by three well-known commercial online map services—Google
Map3, Bing Map4, and Baidu Map5.

We first report two case studies using local and global route
recommendation respectively, as shown in Fig. 12. Fig. 12(a)
shows a case for local route recommendation. Route1 (which
is the shortest path) is returned by Bing map and Google map
and route3 is offered by Baidu map. Note that they recommend
a single route to all drivers. Different from these commercial
route recommendation services, PRR is able to recommend
various routes to individual drivers according to their driving
preference. If a driver prefers to perform eco-driving (e.g.,
driver2 shown in the Fig. 7), route1 is recommended because
it costs less fuel. If a driver prefers to travel with high speeds
(e.g., driver1 shown in the Fig. 7), route2 is recommended.

Fig. 12(b) shows a case for global route recommendation.
Route1 is recommended to a driver who mainly cares about
the fuel consumption (i.e., whose ratio FC

TD is small). For-
tunately, there are sufficient historical trajectories to support
recommending route1. Hence, route1 is returned using local
route recommendation. Route2 is returned by global route
recommendation using three transfer edges.

To quantify the satisfaction degrees of two different routes,
we introduce the F-ratio= F(P,R′)

F(P,R) . Route R is recommended
by an PRR query and route R′ represents a route returned by
an on-line map service or an PRR query. Since some computed
routes are pieced up by multiple historical trajectories, we
estimate the corresponding costs of them by considering fine-
grained costs associated with the involved road segments,
which may introduce some error. We plot F-ratios for local
route recommendation and global route recommendation in
Fig. 13(a) and Fig. 13(b), respectively. Although the three on-
line map services may employ different algorithms to return
different routes, their average F-ratios exhibit almost the same
behavior. Clearly, our proposal outperforms all the three on-
line map services, because none of the routes return by the
three on-line map services have F-ratios exceeding 1.

 0.4

 0.6

 0.8

 1

 2.5 3 3.5 4

F
-r

a
ti
o

EDLR (km)

PRR

GoogleMap

BingMap

BaiduMap

(a) Local Route Recommendation

 0.4

 0.6

 0.8

 1

 5 10 15 20

F
-r

a
ti
o

EDGR (km)

PRR

GoogleMap

BingMap

BaiduMap

(b) Global Route Recommendation

Fig. 13. Effectiveness Study using F -Ratios

Specifically, for local route recommendation, the routes
returned by the on-line map services have F-ratios lower than

3http://ditu.google.cn/
4http://cn.bing.com/maps/
5http://map.baidu.com/

0.6 as shown in Fig. 13(a); and for global route recommenda-
tion, they have F-ratios lower than 0.7 as shown in Fig. 13(b).
These demonstrate that our PRR queries are very effective. We
notice that the routes returned by the on-line map services have
higher F-ratios in global route recommendation than that in
local route recommendation. This is because people tend to
use express ways and not many options can be provided.

VII. RELATED WORK

Route Planning: Various route planning algorithms have
been developed to support different scenarios. Shortest path
planning is supported by Dijkstra’s algorithm and A∗ al-
gorithm, where the edge weights correspond to the travel
distances of the edges. Fastest route planning relies on the
modeling of edges’ travel times. A routing algorithm is able
to find the fastest paths when modeling the travel time on
an edge as a linear function [11]. Another fastest routing
algorithm supports the modeling of uncertain travel times,
where the travel time on an edge is modeled as a random
variable [10]. Eco-routing aims to return the route that is the
most eco-friendly [1], where the edges are associated with
eco-weights reflecting the fuel consumption of traversing the
edges. Various methods are proposed to assign such eco-
weights [19], [22] using GPS data and conduct eco-routing
on the obtained eco-weights [21]. Skyline routing considers
more than one travel cost, such as distances, travel times, toll
fees, and the number of traffic lights, etc., when planning
routes. Various algorithms are proposed to support Skyline
routing when the edge weights are deterministic [12] and
uncertain [21], respectively. All the aforementioned proposals
do not explore how to employ drivers’ past trajectories to
improve the quality of route planning. Further, they do not
consider driver’s distinct driving preferences and are only
able to suggest the same routes to all drivers. In contrast,
our proposals utilize drivers’ past trajectories to recommend
personalized routes to individual drivers.

Route Planning Using Trajectories: Recently, a few stud-
ies employ historical trajectories to improve routing services.
Given a source and a destination, the most popular route
(MPR) between them is identified from historical trajecto-
ries [6]. MPR is typically not the shortest route between them
and is arguably better than the shortest route. Time period-
based most popular route (TPMPR) improves MPR by con-
sidering the temporal context. Given a time period, TPMPR is
able to identify the MPR during the given time period. Another
study focuses on finding top-k popular routes (TKPR) from
uncertainty trajectories generated by low frequency GPS data.
However, all these proposals do not consider drivers’ driving
preferences. Namely, they return the same MPR, TPMPR, or
TKPR to all drivers.

Personalized Route Planning: Our work significantly
differs from TRIP [15]. First, we use big trajectory data from
all drivers (using filters to identify relevant ones) but TRIP
only uses drivers’ own trajectories. Thus, TRIP only works on
roads travelled by the driver himself, while ours works on all
roads covered by big trajectory data. Second, our empirical
study is conducted on a much larger data set while TRIP’s is
from 100 cars within 2 weeks. Third, TRIP can only model
preference w.r.t. travel time, while ours can model arbitrary
number of travel costs. Four, we use distributions to model

553

Authorized licensed use limited to: Central South University. Downloaded on January 11,2021 at 06:29:31 UTC from IEEE Xplore. Restrictions apply.

(a) Local Route Recommendation (b) Global Route Recommendation

Fig. 12. Case Studies

driving preferences rather than average values used by TRIP,
which is more accurate.

T-drive [23] is able to return different fastest routes to
different drivers. However, the T-driver approach cannot solve
our problem because T-drive models a driver’s driving prefer-
ence while considering only one travel cost, i.e., travel time.
In contrast, we model a driver’s driving preference while
considering multiple travel costs.

In a recent work [2], authors assume drivers know all the
pareto-optimal routes, but we do not make such unrealistic
assumptions. Furthermore, [2] can only model preferences on
static travel costs (e.g., distance, number of traffic lights),
while we can model dynamic costs (e.g., travel time and fuel)
depending on e.g., individual drivers or time of a day.

An interactive personalized route planning system [18]
is described. However, it requires users to provide training
data, e.g., routes preferred by drivers and routers not preferred
by drivers, to identify driving preferences. In contrast, our
proposals do not require users to provide any training data,
but just their historical trajectories.

VIII. CONCLUSION AND OUTLOOK

We propose and study personalized route recommendation
problem using big trajectory data. We provide techniques
for modeling and updating driver’s driving preferences. We
also provide efficient and effective methods to recommend
personalized routes in two different settings: local route recom-
mendation and global route recommendation. Empirical studies
with a large, real trajectory data set suggest that the paper’s
proposals are efficient and effective.

In future work, it is of interest to include resources with
richer semantic (e.g., points-of-interest) to perform personal-
ized route recommendation. It is also of interest to integrate
other driving preference models into the personalized route
recommendation framework.

REFERENCES

[1] O. Andersen, C. S. Jensen, K. Torp, and B. Yang. Ecotour: Reducing
the environmental footprint of vehicles using eco-routes. In MDM (1),
pages 338–340, 2013.

[2] A. Balteanu, G. Jossé, and M. Schubert. Mining driving preferences in
multi-cost networks. In Advances in Spatial and Temporal Databases,
pages 74–91. Springer, 2013.

[3] C. M. Bishop et al. Pattern recognition and machine learning, volume 1.
springer New York, 2006.

[4] D. Bowyer, R. Akcelik, and D. Biggs. Guide to fuel consumption
analysis for urban traffic management. Technical report, ARRB Internal
Report-AIR 390-9, 1984.

[5] V. Ceikute and C. S. Jensen. Routing service quality - local driver
behavior versus routing services. In MDM (1), pages 97–106, 2013.

[6] Z. Chen, H. T. Shen, and X. Zhou. Discovering popular routes from
trajectories. In ICDE, pages 900–911. IEEE, 2011.

[7] C. F. Daganzo and Y. Sheffi. On stochastic models of traffic assignment.
Transportation Science, 11(3):253–274, 1977.

[8] R. A. Fisher. The design of experiments. 1935.
[9] C. Guo, Y. Ma, B. Yang, C. S. Jensen, and M. Kaul. Ecomark: evalu-

ating models of vehicular environmental impact. In SIGSPATIAL/GIS,
pages 269–278, 2012.

[10] M. Hua and J. Pei. Probabilistic path queries in road networks: traffic
uncertainty aware path selection. In EDBT, pages 347–358. ACM, 2010.

[11] E. Kanoulas, Y. Du, T. Xia, and D. Zhang. Finding fastest paths on a
road network with speed patterns. In ICDE, pages 10–10. IEEE, 2006.

[12] H.-P. Kriegel, M. Renz, and M. Schubert. Route skyline queries: A
multi-preference path planning approach. In ICDE, pages 261–272.
IEEE, 2010.

[13] S. Kullback. Information theory and statistics. Courier Dover Publica-
tions, 1997.

[14] A. N. Langville and C. D. Meyer. Deeper inside pagerank. Internet
Mathematics, 1(3):335–380, 2004.

[15] J. Letchner, J. Krumm, and E. Horvitz. Trip router with individualized
preferences (trip): Incorporating personalization into route planning.
In Proceedings of the National Conference on Artificial Intelligence,
volume 21, page 1795. Menlo Park, CA; Cambridge, MA; London;
AAAI Press; MIT Press; 1999, 2006.

[16] W. Luo, H. Tan, L. Chen, and L. M. Ni. Finding time period-based
most frequent path in big trajectory data. In SIGMOD, pages 713–724.
ACM, 2013.

[17] P. Newson and J. Krumm. Hidden markov map matching through noise
and sparseness. In SIGSPATIAL, pages 336–343. ACM, 2009.

[18] S. Rogers and P. Langley. Personalized driving route recommendations.
In Proceedings of the American Association of Artificial Intelligence
Workshop on Recommender Systems, pages 96–100, 1998.

[19] B. Yang, C. Guo, and C. S. Jensen. Travel cost inference from sparse,
spatio temporally correlated time series using markov models. PVLDB,
6(9):769–780, 2013.

[20] B. Yang, C. Guo, and C. S. Jensen. Travel cost inference from sparse,
spatio-temporally correlated time series using markov models. PVLDB,
6(9):769–780, 2013.

[21] B. Yang, C. Guo, C. S. Jensen, M. Kaul, and S. Shang. Stochastic
skyline route planning under time-varying uncertainty. In ICDE, pages
136–147, 2014.

[22] B. Yang, M. Kaul, and C. S. Jensen. Using incomplete information
for complete weight annotation of road networks. IEEE Trans. Knowl.
Data Eng., 26(5):1267–1279, 2014.

[23] J. Yuan, Y. Zheng, C. Zhang, W. Xie, X. Xie, G. Sun, and Y. Huang.
T-drive: driving directions based on taxi trajectories. In SIGSPATIAL,
pages 99–108. ACM, 2010.

[24] Y. Zheng, Y. Liu, J. Yuan, and X. Xie. Urban computing with taxicabs.
In Ubicomp, pages 89–98, 2011.

554

Authorized licensed use limited to: Central South University. Downloaded on January 11,2021 at 06:29:31 UTC from IEEE Xplore. Restrictions apply.

