A Brief Introduction To Contrastive learning

Three key procedures of contrastive learning:
* 1. Design instances.
« 2. Define (dis)similar instances.

e 3. Define encoders.

Problems: treating two different but semantic similar samples as a
negative pair may hurt the performance.



A Brief Introduction To Contrastive learning

« Can we evaluate the spatial-temporal similarity of
traffic pattern between locations?

(For the purpose of defining positive/negative sample pairs)



Revisiting Spatial-Temporal Similarity: A Deep
Learning Framework for Traffic Prediction
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Introduction

* The challenge of traffic prediction lies in how to model the complex and

* Existing work make strong assumptions about spatial dependence and temporal dynamics. i.e.
, and However, in
practice the , and the
from one period to another period.

* The authors make two observations:
(1) The spatial dependencies between locations could be dynamics;

(2) The temporal dependency follows daily and weekly pattern but it is not strictly periodic for its
dynamic temporal shifting.

* To address these two issues, the authors propose a Spatial-Temporal Dynamic Network(STDN),
using a to learn the dynamic similarity between locations, and a
is designed to handle long-term periodic temporal shifting.



Notations and Problem Formulation

« Spatial partition: Split the whole city to an a x b grid map with n regions in total( n=a x b), and
use {1, 2, ..., n} to denote them.

 Temporal partition: Split the whole time period into m equal-length continuous time intervals.

- Start/end traffic volume: y; and y/ stand for the start/end traffic volume for region | during
the t-th time interval.

» Traffic flow: the traffic flow starting from region i in time interval t and ending in region j in time
interval T is denoted as f/f

* Problem: Given the data until time interval t, the traffic volume prediction problem aims to
predict the start and end traffic volume at time interval t+1.



Spatial-Temporal Dynamic Network

* How to model the spatial dependency?

Local CNN without considering spatial dynamic similarity
Y#) = ReLUW® + Y®E™D 1 p®)y (1)
* How to represent the spatial similarity?

If there are more flows existing between two regions, the relation between them is stronger.

After considering

P =ReLUW® «FD +b1),  (3)

Y = ReLUW® « YD 4 b®) @ o(FYF ), (@)



Spatial-Temporal Dynamic Network

* How to model the temporal dependency? LSTM

h; ; = LSTM([y,¢; €i,t), hit—1), (2)

* How to handle the long-term information?

since the
, thus significantly weaken the effects of periodicity.

To address this issue,
(e.g., same time of yesterday, and the day

before yesterday) should be explicitly modeled.

However, purely incorporating relative time intervals is
insufficient ignores temporal shifting of periodicity, i.e.,
traffic data is not strictly periodic.
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Figure 2: The temporal shifting of periodicity. (a) Temporal
shifting between different days. (b) Temporal shifting be-
tween different weeks. Note that, each time in these figures
represents a time interval (e.g., 9:30am means 9:00-9:30am).



Spatial-Temporal Dynamic Network

* How to address the shifting in daily
periodicity?
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h?f = LSTM([y?;eld], hi ), (5)

Output

E P,q91,P,9q
Ot hz ) (6) Figure 1: The architecture of STDN. (a) Periodically shifted attention mechanism captures the long-term periodic dependenc
and temporal shifting. For each day, we also use LSTM to capture the sequential information. (b) The short-term tempor:
ex (S core (hp,q h: )) dependency is captured by one LSTM. (c) The flow gating mechanism tracks the dynamic spatial similarity representation b
P i,t Lt (7) controlling the spatial information propagation; FC means fully connected layers and Conv means several convolutional layer
qu g exp ( Scor e(hlp % q ’ hi,t ) ) (d) A unified multi-task prediction component predicts two types of traffic volumes simultaneously.
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Figure 3: Evaluation of flow gating mechanism (FGM) and

its variants.
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Table 1: Comparison with Different Baselines
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Start End 26 /I LSTN [ LSTN

Dataset Method RMSE MAPE RMSE | MAPE MLSTVL s
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*** (**) means the result is significant according to Students T-test at level 0.01 (0.05) compared to DMVST-Net anism (PSAM) and its variants.



Conclusion and Discussion

« STDN method tracks the dynamics spatial similarity between regions by flow gating mechanism
and temporal similarity by periodically shifted attention mechanism.

 The proposed model on other spatial-temporal prediction problems needs to be investigated.

 The feature importance of traffic prediction needs to be further explained, which is important
for policy makers.
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