
Three key procedures of contrastive learning:  

• 1. Design instances.  

• 2. Define (dis)similar instances.  

• 3. Define encoders.  

Problems: treating two different but semantic similar samples as a 
negative pair may hurt the performance.  
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• Can we evaluate the spatial-temporal similarity of 
traffic pattern between locations? 
(For the purpose of defining positive/negative sample pairs)
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• The challenge of traffic prediction lies in how to model the complex spatial dependencies and 
temporal dynamics 

• Existing work make strong assumptions about spatial dependence and temporal dynamics. i.e. 
spatial dependence is stationary in time, and temporal dynamics is strictly periodical.  However, in 
practice the spatial dependence could be dynamic, and the temporal dynamics could have some 
perturbation from one period to another period. 

• The authors make two observations: 

(1) The spatial dependencies between locations could be dynamics; 

(2) The temporal dependency follows daily and weekly pattern but it is not strictly periodic for its 
dynamic temporal shifting. 

• To address these two issues, the authors propose a Spatial-Temporal Dynamic Network(STDN), 
using a flow gating mechanism to learn the dynamic similarity between locations, and a periodically 
shifted attention mechanism is designed to handle long-term periodic temporal shifting.

Introduction



• Spatial partition:  Split the whole city to an a x b grid map with n regions in total( n= a x b), and 
use {1, 2, …, n} to denote them. 

• Temporal partition: Split the whole time period into m equal-length continuous time intervals.  

• Start/end traffic volume:   and  stand for the start/end traffic volume for region I during 
the t-th time interval. 

• Traffic flow: the traffic flow starting from region i in time interval t and ending in region j in time 
interval τ is denoted as  

• Problem: Given the data until time interval t, the traffic volume prediction problem aims to 
predict the start and end traffic volume at time interval t+1.
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Notations and Problem Formulation



• How to model the spatial dependency? 

Local CNN without considering spatial dynamic similarity 

 

• How to represent the spatial similarity?  

If there are more flows existing between two regions, the relation between them is stronger. 

After considering spatial dynamic similarity: 
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• How to model the temporal dependency? LSTM 

 

• How to handle the long-term information?  

since the increasing length enlarges the risk of gradient 
vanishing, thus significantly weaken the effects of periodicity.  

To address this issue, relative time intervals of the 
predicting target (e.g., same time of yesterday, and the day 
before yesterday) should be explicitly modeled.  

However, purely incorporating relative time intervals is 
insufficient ignores temporal shifting of periodicity, i.e., 
traffic data is not strictly periodic.  
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• How to address the shifting in daily 
periodicity? 

(1) relative time intervals from previous 
P days are included for handling the 
periodic dependency.  

(2) we further select Q time intervals 
from each day in Q.  

•
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• STDN method tracks the dynamics spatial similarity between regions by flow gating mechanism 
and temporal similarity by periodically shifted attention mechanism. 

• The proposed model on other spatial-temporal prediction problems needs to be investigated. 

• The feature importance of traffic prediction needs to be further explained, which is important 
for policy makers. 

Conclusion and Discussion
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