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T-GCN: A Temporal Graph Convolutional
Network for Traffic Prediction

Ling Zhao, Yujiao Song, Chao Zhang, Yu Liu, Pu Wang, Tao Lin, Min Deng and Haifeng Li, Member, IEEE

Abstract—Accurate and real-time traffic forecasting plays an important role in the Intelligent Traffic System and is of great significance
for urban traffic planning, traffic management, and traffic control. However, traffic forecasting has always been considered an open
scientific issue, owing to the constraints of urban road network topological structure and the law of dynamic change with time, namely,
spatial dependence and temporal dependence. To capture the spatial and temporal dependence simultaneously, we propose a novel
neural network-based traffic forecasting method, the temporal graph convolutional network (T-GCN) model, which is in combination
with the graph convolutional network (GCN) and gated recurrent unit (GRU). Specifically, the GCN is used to learn complex topological
structures to capture spatial dependence and the gated recurrent unit is used to learn dynamic changes of traffic data to capture
temporal dependence. Then, the T-GCN model is employed to traffic forecasting based on the urban road network. Experiments
demonstrate that our T-GCN model can obtain the spatio-temporal correlation from traffic data and the predictions outperform
state-of-art baselines on real-world traffic datasets. Our tensorflow implementation of the T-GCN is available at
https://github.com/lehaifeng/T-GCN.

Index Terms—Traffic forecasting, Temporal Graph Convolutional Network (T-GCN), spatial dependence, temporal dependence.
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1 INTRODUCTION

W ITH the development of the Intelligent Traffic Sys-
tem, traffic forecasting has received more and more

attention. It is a key part of an advanced traffic manage-
ment system and is an important part of realizing traffic
planning, traffic management, and traffic control. Traffic
forecasting is a process of analyzing traffic conditions on
urban roads, including flow, speed, and density, mining
traffic patterns, and predicting the trends of traffic on roads.
Traffic forecasting can not only provide a scientific basis
for traffic managers to sense traffic congestions and limit
vehicles in advance but also provide security for urban
travelers to choose appropriate travel routes and improve
travel efficiency [1], [2], [3]. However, traffic forecasting has
always been a challenge task due to its complex spatial and
temporal dependences:

(1) Spatial dependence. The change in traffic volume is
dominated by the topological structure of the urban road
network. The traffic status at upstream roads impact traffic
status at downstream roads through the transfer effect, and
the traffic status at downstream roads impact traffic status
at upstream through the feedback effect [4]. As shown
in Figure 1, due to the strong influence between adjacent
roads, the short-term similarity is changed from state 1© (the
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Fig. 1. Spatial dependence is restricted by the topological structure of
the road network. Due to the strong influence between adjacent roads,
the short-term traffic flow similarity is changed from state 1© to state 2©.

upstream road is similar to the midstream road) to state 2©
(the upstream road is similar to the downstream road).

(2) Temporal dependence. The traffic volume changes
dynamically over time and is mainly reflected in periodicity
and trend. As shown in Figure 2(a), the traffic volume on
Road 1 shows a periodic change over a week. As shown in
Figure 2(b), the traffic volume in one day will also change
over time; for example, the traffic volume will be affected by
the traffic condition of the previous moment or even longer.

There are many existing traffic forecasting methods,
some of which consider temporal dependence, including the
Autoregressive Integrated Moving Average (ARIMA) model
[5], [6], the Kalman filtering model [7], the support vector
regression machine model [8], [9], the k-nearest neighbor
model [10], the Bayesian model [11], and partial neural
network model [12], [13]. The above methods consider the
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(a)

(b)

Fig. 2. (a) Periodicity. The traffic volume in the road changes periodically
within one week. (b) Trend. The traffic volume in the road has tendency
change within one day.

dynamic change of traffic condition but ignore the spatial
dependence, so that the change of traffic condition is not
restricted by the road network and we cannot predict the
state of traffic data accurately. To characterize the spatial
features better, some studies [14], [15], [16] introduce a
convolution neural network for spatial modeling; however,
a convolutional neural network is commonly used for Eu-
clidean data [17] such as images, regular grids, and so on.
Such models cannot work under the context of an urban
road network with a complex topological structure so in
essence they cannot describe the spatial dependence.

To solve the above problems, we propose a new traffic
forecasting method called the temporal graph convolutional
network (T-GCN), which is used for traffic forecasting task
based on urban road network. Our contributions are three-
fold:

(1) We propose the T-GCN model by combining the
graph convolutional network and gated recurrent unit.
The graph convolutional network is used to capture the
topological structure of the road network to model spatial
dependence. The gated recurrent unit is used to capture the
dynamic change of traffic data on the roads to model tem-
poral dependence. The T-GCN model can also be applied to
other spatio-temporal forecasting tasks.

(2) The forecasting results of the T-GCN model show
a steady state under different prediction horizons, which
indicates that the T-GCN model can not only achieve short-
term prediction but can also be used for long-term traffic
prediction tasks.

(3) We evaluate our approach using the taxi speed data
of the Luohu District in Shenzhen and Los-loop datasets.
The results show that our approach reduces the prediction
error by approximately 1.5%-57.8% compared to all baseline
methods, which demonstrates that the T-GCN model has
superiority in traffic forecasting.

The rest of the paper is organized as follows. Section II
reviews relevant research about traffic forecasting. Section
III introduces the details of our method. In section IV, we
evaluate the predictive performance of the T-GCN by real-
world traffic dataset, including design of model parameters,
prediction results analysis, perturbation analysis, and model

interpretation. We conclude the paper in Section V.

2 RELATED WORK

Intelligent traffic system traffic forecasting is one of the
major research issues today. The existing traffic forecasting
methods can be divided into two categories: the model-
driven approach and the data-driven approach. First, the
model-driven approach mainly explains the instantaneous
and steady-state relationships among traffic volume, speed,
and density. Such methods require comprehensive and de-
tailed system modeling based on prior knowledge. The rep-
resentative methods contain the queuing theory model [18],
the cell transmission model [19], the traffic velocity model
[20], the microscopic fundamental diagram model [21], and
so on. In reality, traffic data is influenced by many factors
and it is difficult to obtain an accurate traffic model. The
existing models cannot accurately describe the variations
of traffic data in complex real-world environments. In ad-
dition, the construction of these models requires significant
computing capability [22] and is easily constrained by traffic
disturbances and sampling point spacing, etc.

Second, data-driven approaches infer the variation ten-
dency based on statistical regularity of the data and is
eventually used to predict and evaluate the traffic state [23],
[24]. This type of method does not analyze the physical
properties and dynamic behavior of the traffic system and
has high flexibility. The earlier method includes the histor-
ical average model [2], in which the average value of the
traffic volume in historical periods is used as the prediction
value. This method does not require any assumptions and
the calculation is simple and fast but it cannot fit well with
temporal features and the prediction precision is low. With
the continuous deepening of research on traffic forecasting,
a large number of methods with higher prediction precision
have emerged, which can be mainly divided into a paramet-
ric model and nonparametric model [25], [26].

The parametric model presupposes the regression func-
tion, the parameters are determined through processing the
original data, and then realizing the traffic forecasting is
based on the regression function. The time series model,
the linear regression model [27], [28], and the Kalman fil-
tering model are common methods. The time series model
fits the observed time series into a parametric model to
predict future data. As early as 1976, Box and Jenkins
[5] proposed the Autoregressive Integrate Moving Average
Model (ARIMA), which is the most widely used time series
model. In 1995, Hamed et al. [6] used the ARIMA model to
predict the traffic volume in urban arterials. To improve the
prediction precision of the model, different variants were
produced, including Kohonen ARIMA [29], subset ARIMA
[30], seasonal ARIMA [31], and so on. Lippi et al. [32]
compared the support vector regression model with the
seasonal ARIMA model and found that the SARIMA model
has better results in traffic congestion. The linear regression
model builds a regression function based on historical traffic
data to predict traffic flow. In 2004, Sun et al. [27] solves
the problem of interval forecasting using the local linear
model, and obtain better result on the real-world traffic
dataset. The Kalman filtering model predicts future traffic
conditions based on the traffic state of the previous moment
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and the current moment. In 1984, Okutani et al. [7] used
the Kalman filtering theory to establish the traffic flow state
prediction model. Subsequently, some studies [33], [34] used
the Kalman filtering model to realize traffic prediction tasks.

The traditional parametric model has a simple algorithm
and convenient calculation. However, these models depend
on the assumption of stationary, cannot reflect the nonlin-
earity and uncertainty characteristics of traffic data, and
cannot overcome the interference of random events such
as traffic accidents. The nonparametric model solves these
problems well and only requires enough historical data to
learn the statistical regularity from traffic data automatically.
The common nonparametric model includes: the k-nearest
neighbor model [10], the support vector regression model
[8], [9], [35], the Fuzzy Logic model [36], the Bayesian
network model [11], the neural network model, and so on.

In recent years, with the rapid development of deep
learning [37], [38], [39], the deep neural network models
have received attention because they can capture the dy-
namic characteristics of traffic data well and achieve the
best results at present. According to whether or not spatial
dependence is considered, models can be divided into two
categories. Some methods consider temporal dependence
only, e.g., Park et al. [40] used Feed Forward NN to im-
plement traffic flow prediction tasks. Huang et al. [12]
proposed a network architecture consisting of a deep belief
network (DBN) and a regression model and verified that
the network can capture random features from traffic data
on multiple datasets and this model improved prediction ac-
curacy in traffic forecasting. In addition, since the recurrent
neural network (RNN) and its variants have long short-term
memory (LSTM) and the gated recurrent unit (GRU) can
effectively use the self-circulation mechanism, they can learn
temporal dependence well and achieve better prediction
results [13], [41].

These models take the temporal feature into account but
ignore the spatial dependence, so that the change of traffic
data is not constrained by the urban road network and thus
they cannot accurately predict the traffic state on the road.
Making full use of the spatial and temporal dependence is
the key to solving traffic forecasting problems. To better
characterize spatial features, many studies had made im-
provements on this basis. Lv et al. [42] proposed a SAE
model to capture the spatio-temporal feature from traffic
data and realize short-term traffic flow predictions. Zhang
et al. [14] proposed a deep learning model called ST-ResNet,
which designed residual convolutional networks for each
attribute based on the temporal closeness, period, and trend
of crowd flows, and then three networks and external factors
were dynamically aggregated to predict the inflow and
outflow of crowds in each region of a city. Wu et al. [15]
designed a feature fusion architecture for short-term predic-
tion by combining CNN and LSTM. A 1-dimensional CNN
was used to capture spatial dependence and two LSTMs
were used to mine the short-term variability and periodic-
ity of traffic flow. Cao et al. [16] proposed an end-to-end
model called ITRCN, which converted interactive network
traffic into images and used CNN to capture interactive
functions of traffic, used GRU to extract temporal features,
and proved that the prediction error of this model is 14.3%
and 13.0% higher than that of GRU and CNN, respectively.

Ke et al. [43] proposed a new deep learning method called
the fusion convolutional long short-term memory network
(FCL-Net), taking into account spatial dependence, tempo-
ral dependence, and exogenous dependence for short-term
passenger demand forecasting. Yu et al. [44] used the Deep
Convolutional Neural Network(DCNN) to capture spatial
dependence, used LSTM to capture temporal dynamics, and
demonstrated the superiority of the SRCN model through
experiments on Beijing traffic network data.

Although the above methods introduced the CNN to
model spatial dependence and made great progress in traffic
forecasting tasks, the CNN is essentially suitable for Eu-
clidean space, such as images, regular grids, etc., and has
limitations on traffic networks with a complex topological
structure, and thus cannot essentially characterize the spa-
tial dependence. Therefore, this type of method also has
certain defects. In recent years, with the development of
the graph convolutional network model [45], which can
be used to capture structural feature of graph network,
provides a good solution for the above problem. Li et al.
[46] proposed a DCRNN model, which captures the spatial
feature through random walks on graphs, and the temporal
feature through encoder-decoder architecture.

Based on this background, in this paper we propose a
new neural network approach that can capture the complex
temporal and spatial features from traffic data, and can then
be used for traffic forecasting tasks based on an urban road
network.

3 METHODOLOGY

3.1 Problem Definition

In this paper, the goal of the traffic forecasting is to predict
the traffic information in a certain period of time based
on the historical traffic information on the roads. In our
method, the traffic information is a general concept which
can be traffic speed, traffic flow, and traffic density. Without
loss of generality, we use traffic speed as a example of traffic
information in experiment section.

Definition 1: road network G. We use an unweighted
graph G = (V,E) to describe the topological structure of
the road network, and we treat each road as a node, where
V is a set of road nodes, V = {v1, v2, · · · , vN}, N is the
number of the nodes, and E is a set of edges. The adjacency
matrix A is used to represent the connection between roads,
A ∈ RN×N . The adjacency matrix contains only elements of
0 and 1. The element is 0 if there is no link between roads
and 1 denotes there is a link.

Definition 2: feature matrix XN×P . We regard the traffic
information on the road network as the attribute feature of
the node in the network, expressed as X ∈ RN×P , where P
represents the number of node attribute features (the length
of the historical time series) and Xt ∈ RN×i is used to
represent the speed on each road at time i. Again, the node
attribute features can be any traffic information such as
traffic speed, traffic flow, and traffic density.

Thus, the problem of spatio-temporal traffic forecasting
can be considered as learning the mapping function f on
the premise of road network topology G and feature matrix
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Fig. 3. Overview. We take the historical traffic information as input
and obtain the finally prediction result through the Graph Convolution
Network and the Gated Recurrent Units model.

X and then calculating the traffic information in the next T
moments, as shown in equation 1:

[Xt+1, · · · , Xt+T ] = f (G; (Xt−n, · · · , Xt−1, Xt)) (1)

where n is the length of historical time series and T is the
length of the time series needed to be predicted.

3.2 Overview

In this section, we describe how to use the T-GCN model
to realize the traffic forecasting task based on the urban
roads. Specifically, the T-GCN model consists of two parts:
the graph convolutional network and the gated recurrent
unit. As shown in Figure 3, we first use the historical n time
series data as input and the graph convolution network is
used to capture topological structure of urban road network
to obtain the spatial feature. Second, the obtained time series
with spatial features are input into the gated recurrent unit
model and the dynamic change is obtained by information
transmission between the units, to capture temporal feature.
Finally, we get results through the fully connected layer.

3.3 Methodology

3.3.1 Spatial Dependence Modeling
Acquiring the complex spatial dependence is a key problem
in traffic forecasting. The traditional convolutional neural
network (CNN) can obtain local spatial features, but it can
only be used in Euclidean space, such as images, a regular
grid, etc. An urban road network is in the form of graph
rather than two-dimensional grid, which means the CNN
model cannot reflect the complex topological structure of
the urban road network and thus cannot accurately capture
spatial dependence. Recently, generalizing the CNN to the
graph convolutional network (GCN), which can handle
arbitrary graph-structured data, has received widespread
attention. The GCN model has been successfully used in
many applications, including document classification [17],
unsupervised learning [45] and image classification [47].
The GCN model constructs a filter in the Fourier domain,
the filter acts on the nodes of graph and its first-order
neighborhood to capture spatial features between the nodes,
and then the GCN model can be built by stacking multiple
convolutional layers. As shown in Figure 4, assuming that
node 1 is the central road, the GCN model can obtain the
topological relationship between the central road and its

Fig. 4. Assuming that node 1 is a central road. (a) The blue nodes
indicate the roads connected to the central road. (b) We obtain the
spatial feature by obtaining the topological relationship between the road
1 and the surrounding roads.

surrounding roads, encode the topological structure of the
road network and the attributes on the roads, and then
obtain spatial dependence. In summary, we use the GCN
model [47] to learn spatial features from traffic data. A 2-
layer GCN model can be expressed as:

f (X,A) = σ
(
ÂRelu

(
ÂXW0

)
W1

)
(2)

where X represents the feature matrix, A represents the
adjacency matrix, Â = D̃− 1

2 ÃD̃− 1
2 denotes preprocessing

step, Ã = A+ IN is a matrix with self-connection structure,
D̃ is a degree matrix, D̃ =

∑
j Ãij . W0 and W1 represent the

weight matrix in the first and second layer, and σ(·), Relu()
represent the activation function.

3.3.2 Temporal Dependence Modeling

Acquiring the temporal dependence is another key problem
in traffic forecasting. At present, the most widely used
neural network model for processing sequence data is the
recurrent neural network (RNN). However, due to defects
such as gradient disappearance and gradient explosion,
the traditional recurrent neural network has limitations for
long-term prediction [48]. The LSTM model [49] and the
GRU model [50] are variants of the recurrent neural network
and have been proven to solve the above problems. The
basic principles of the LSTM and GRU are roughly the same
[51]. they all use gated mechanism to memorize as much
long-term information as possible and are equally effective
for various tasks. However, due to its complex structure,
LSTM has a longer training time while the GRU model
has a relatively simple structure, fewer parameters, and
faster training ability. Therefore, we chose the GRU model to
obtain temporal dependence from the traffic data. As shown
in Figure 5, ht−1 denotes the hidden state at time t-1; xt
denotes the traffic information at time t; rt is the reset gate,
which is used to control the degree of ignoring the status
information at the previous moment; ut is the update gate,
which is used to control the degree of to which the status
information at the previous time is brought into the current
status; ct is the memory content stored at time t; and ht is
output state at time t. The GRU obtains the traffic status
at time t by taking the hidden status at time t-1 and the
current traffic information as inputs. While capturing the
traffic information at the current moment, the model still
retains the changing trend of historical traffic information
and has the ability to capture temporal dependence.
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Fig. 5. The architecture of the Gated Recurrent Unit model.

Fig. 6. The overall process of spatio-temporal prediction. The right part
represents the specific architecture of a T-GCN unit, and GC represents
graph convolution.

3.3.3 Temporal Graph Convolutional Network
To capture the spatial and temporal dependences from
traffic data at the same time, we propose a temporal graph
convolutional network model (T-GCN) based on a graph
convolutional network and gated recurrent units. As shown
in Figure 6, the left side is the process of spatio-temporal
traffic prediction, the right side shows the specific structure
of a T-GCN cell, ht−1 denotes the output at time t-1, GC is
graph convolution process, and ut, rt are update gate and
reset gate at time t, and ht denotes the output at time t.
The specific calculation process is shown below. f (A,Xt)
represents the graph convolution process and is defined in
equation 2. W and b represent the weights and deviations in
the training process.

ut = σ(Wu [f(A,Xt), ht−1] + bu) (3)

rt = σ(Wr [f(A,Xt), ht−1] + br) (4)

ct = tanh(Wc [f(A,Xt), (rt ∗ ht−1)] + bc) (5)

ht = ut ∗ ht−1 + (1− ut) ∗ ct (6)

In summary, the T-GCN model can deal with the com-
plex spatial dependence and temporal dynamics. On one
hand, the graph convolutional network is used to capture
the topological structure of the urban road network to obtain
the spatial dependence. On the other hand, the gated recur-
rent unit is used to capture the dynamic variation of traffic
information on the roads to obtain the temporal dependence
and eventually realize traffic prediction tasks.

3.3.4 Loss Function
In the training process, the goal is to minimize the error
between the real traffic speed on the roads and the predicted
value. We use Yt and Ŷt to denote the real traffic speed and
the predicted speed, respectively. The loss function of the
T-GCN model is shown in equation 7. The first term is used
to minimize the error between the real traffic speed and the
prediction. The second term Lreg is an L2 regularization

term that helps to avoid an over fitting problem and λ is a
hyperparameter.

loss =‖ Yt − Ŷt ‖ +λLreg (7)

4 EXPERIMENTS

4.1 Data Description

In this section, we evaluate the prediction performance
of the T-GCN model on two real-world datasets: SZ-taxi
dataset and Los-loop set. Since these two datesets are all
related to traffic speed. Without loss of generality, we use
traffic speed as traffic information in experiment section.

(1) SZ-taxi. This dataset was the taxi trajectory of Shen-
zhen from Jan. 1 to Jan. 31, 2015. We selected 156 major roads
of Luohu District as the study area. The experimental data
mainly includes two parts. One is an 156*156 adjacency ma-
trix, which describes the spatial relationship between roads.
Each row represents one road and the values in the matrix
represent the connectivity between the roads. Another one
is a feature matrix, which describes the speed changes over
time on each road. Each row represents one road; each
column is the traffic speed on the roads in different time
periods. We aggregate the traffic speed on each road every
15 minutes.

(2) Los-loop. This dataset was collected in the highway
of Los Angeles County in real time by loop detectors.
We selected 207 sensors and its traffic speed from Mar.1
to Mar.7, 2012. We aggregated the traffic speed every 5
minutes. Similarity, the data concludes an adjacency matrix
and a feature matrix. The adjacency matrix is calculated by
the distance between sensors in the traffic networks. Since
the Los-loop dataset contained some missing data, we used
the linear interpolation method to fill missing values.

In the experiments,the input data was normalized to the
interval [0,1]. In addition, 80% of the data was used as the
training set and the remaining 20% was used as the testing
set. We predicted the traffic speed of the next 15 minutes, 30
minutes, 45 minutes and 60 minutes.

4.2 Evaluation Metrics

To evaluate the prediction performance of the T-GCN
model, we use five metrics to evaluate the difference be-
tween the real traffic information Yt and the prediction Ŷt,
including:

(1) Root Mean Squared Error (RMSE):

RMSE =

√√√√ 1

n

n∑
i=1

(Yt − Ŷt)2 (8)

(2) Mean Absolute Error (MAE):

MAE =
1

n

n∑
i=1

∣∣∣Yt − Ŷt∣∣∣ (9)

(3) Accuracy:

Accuracy = 1− ‖ Y − Ŷ ‖F
‖ Y ‖F

(10)
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(4) Coefficient of Determination (R2):

R2 = 1−
∑

i=1(Yt − Ŷt)2∑
i=1(Yt − Ȳ )2

(11)

(5) Explained Variance Score (Var):

var = 1−
V ar

{
Y − Ŷ

}
V ar {Y }

(12)

Specifically, RMSE and MAE are used to measure the
prediction error: the smaller the value is, the better the
prediction effect is. Accuracy is used to detect the prediction
precision: the lager the value is, the better the prediction ef-
fect is.R2 and Var calculate the correlation coefficient, which
measures the ability of the prediction result to represent the
actual data: the larger the value is, the better the prediction
effect is.

4.3 Model Parameters Designing

(1) Hyperparameter
The hyperparameters of the T-GCN model mainly in-

clude: learning rate, batch size, training epoch, and the
number of hidden layers. In the experiment, we manually
adjust and set the learning rate to 0.001, the batch size to 64,
and the training epoch to 3000.

The number of hidden units is a very important param-
eter of the T-GCN model, as different hidden units may
greatly affect the prediction precision. To choose the best
value, we experiment with different hidden units and select
the optimal value by comparing the predictions.

In our experiment, for the SZ-taxi dataset, we choose
the number of hidden units from [8, 16, 32, 64, 100, 128]
and analyze the change of prediction precision. As shown
in 7, the horizontal axis represents the number of hidden
units and the vertical axis represents the change of different
metrics. Figure 7(a) shows the results of RMSE and MAE
for different hidden units. It can be seen that the error is
the smallest when the number is 100. Figure 7(b) shows
the variation of Accuracy, R2, and Var for different hidden
units. Similarly, when the number is 100, the results reach
a maximum. In summary, the prediction results are best
when the number is set to 100. When increasing the number
of hidden units, the prediction precision first increases and
then decreases. This is mainly because when the hidden unit
is larger than a certain degree, the model complexity and
the computational difficulty are greatly increased and as a
result, the prediction precision will be reduced. Therefore,
we set the number of hidden units to 100 in all experiments.

In the same way, the results of Los-loop are shown in
7(c) and 7(d), it can be seen that when the number of
hidden units is 64, the prediction precision is highest, and
the prediction error is lowest.

(2) Training
For input layer, the training dataset (80% of the overall

data) is taken as input in the training process and the
remaining data is used as input in the testing process. The
T-GCM model is trained using the Adam optimizer.

4.4 Experimental Results
We compare the performance of the T-GCN model with the
following baseline methods:

(1) History Average model (HA) [2], which uses the
average traffic information in the historical periods as the
prediction.

(2) Autoregressive Integrated Moving Average model
(ARIMA) [5], which fits the observed time series into a
parametric model to predict future traffic data.

(3) Support Vector Regression model (SVR) [35], which
uses historical data to train the model and obtains the rela-
tionship between the input and output, and then predicts by
giving the future traffic data. We use the linear kernel and
the penalty term is 0.001.

(4) Graph Convolutional Network model (GCN) [45]: see
3.2.1 for details.

(5) Gated Recurrent Unit model (GRU) [50]: see 3.2.2 for
details.

Table 1 shows the T-GCN model and other baseline
methods for 15 minutes, 30 minutes, 45 minutes and 60
minutes on SZ-taxi and Los-loop datasets. ∗ means that
the values are too smal to be negligible, indicating that the
model’s prediction effect is poor. It can be seen that the T-
GCN model obtains the best prediction performance under
all evaluation metrics for all prediction horizons, proving
the effectiveness of the T-GCN model in spatio-temporal
traffic forecasting.

(1) High prediction precision. We can find that the neural
network-based methods, including the T-GCN model, the
GRU model, which emphasize the importance of modeling
the temporal feature, generally have better prediction preci-
sion than other baselines, such as the HA model, the ARIMA
model and the SVR model. For example, for the 15-min
traffic forecasting task, the RMSE error of the T-GCN and
the GRU models are reduced by approximately 50.6% and
48.8% compared with the HA model, and the accuracies are
approximately 6.8% and 5.2% higher than that of HA. The
RMSE of the T-GCN and the GRU models are approximately
52.3% and 50.7% lower than that of the ARIMA model and
the accuracy of these are improved by 41.5% and 40.4%.
Compared with the SVR model, the RMSE of the T-GCN
and the GRU models are reduced by 48.0% and 46.3%, and
approximately 4.7% and 3.0% higher than that of the SVR
model. This is mainly due to methods such as the HA,
ARIMA, and SVR that find it difficult to handle complex,
nonstationary time series data. The lower prediction effect
of the GCN model is because the GCN considers the spatial
features only and ignores that the traffic data is typical
time series data. In addition, as a mature traffic forecasting
method, the ARIMAs prediction precision is relatively lower
than the HA, mainly because the ARIMA has difficulty
dealing with long-term and nonstationary data and the
ARIMA is calculated by calculating the error of each node
and averaging; if there are fluctuations in some data, it will
also increase the final total error.

(2) Spatio-temporal prediction capability. To verify
whether the T-GCN model has the ability to portray spatial
and temporal feature from traffic data, we compare the T-
GCN model with the GCN model and the GRU model. As
shown in Figure 8, we can clearly see that method based on
the spatio-temporal features (T-GCN) has better prediction
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(a) (b)

(c) (d)

Fig. 7. Comparison of predicted performance under different hidden units. (a) Changes in RMSE and MAE based on SZ-taxi. (b) Changes in
Accuracy, R2 and Var based on SZ-taxi. (c) Changes in RMSE and MAE based on Los-loop. (d) Changes in Accuracy, R2 and Var based on
Los-loop.

TABLE 1
The prediction results of the T-GCN model and other baseline methods on SZ-taxi and Los-loop datasets.

T Metric
SZ-taxi Los-loop

HA ARIMA SVR GCN GRU T-GCN HA ARIMA SVR GCN GRU T-GCN

15min

RMSE 7.9198 8.2151 7.5368 9.2717 4.0483 3.9162 7.4427 10.0439 6.0084 7.7922 5.2182 5.1264
MAE 5.4969 6.2192 4.9269 7.2606 2.6814 2.7061 4.0145 7.6832 3.7285 5.3525 3.0602 3.1802

Accuracy 0.6807 0.4278 0.6961 0.6433 0.7178 0.7306 0.8733 0.8275 0.8977 0.8673 0.9109 0.9127
R2 0.7914 0.0842 0.8111 0.6147 0.8498 0.8541 0.7121 ∗ 0.8123 0.6843 0.8576 0.8634
var 0.7914 ∗ 0.8121 0.6147 0.8499 0.8626 0.7121 ∗ 0.8146 0.6844 0.8577 0.8634

30min

RMSE 7.9198 8.2123 7.4747 9.3450 4.0769 3.9617 7.4427 9.3450 6.9588 8.3353 6.2802 6.0598
MAE 5.4969 6.2144 4.9819 7.3211 2.7009 2.7452 4.0145 7.6891 3.7248 5.6118 3.6505 3.7466

Accuracy 0.6807 0.4281 0.6987 0.6405 0.7158 0.7275 0.8733 0.8275 0.8815 0.8581 0.8931 0.8968
R2 0.7914 0.0834 0.8142 0.6086 0.8477 0.8523 0.7121 ∗ 0.7492 0.6402 0.7957 0.8098
var 0.7914 ∗ 0.8144 0.6086 0.8477 0.8523 0.7121 ∗ 0.7523 0.6404 0.7958 0.8100

45min

RMSE 7.9198 8.2132 7.4755 9.4023 4.1002 3.9950 7.4427 10.0508 7.7504 8.8036 7.0343 6.7065
MAE 5.4969 6.2154 5.0332 7.3704 2.7207 2.7666 4.0145 7.6924 4.1288 5.9534 4.0915 4.1158

Accuracy 0.6807 0.4280 0.6986 0.6383 0.7142 0.7252 0.8733 0.8273 0.8680 0.8500 0.8801 0.8857
R2 0.7914 0.0837 0.8141 0.6038 0.8460 0.8509 0.7121 ∗ 0.6899 0.5999 0.7446 0.7679
var 0.7914 ∗ 0.8142 0.6039 0.8459 0.8509 0.7121 ∗ 0.6947 0.6001 0.7451 0.7684

60min

RMSE 7.9198 8.2063 7.4883 9.4504 4.1241 4.0141 7.4427 10.0538 8.4388 9.2657 7.6621 7.2677
MAE 5.4969 6.2118 5.0714 7.4120 2.7431 2.7889 4.0145 7.6952 4.5036 6.2892 4.5186 4.6021

Accuracy 0.6807 0.4282 0.6981 0.6365 0.7125 0.7238 0.8733 0.8273 0.8562 0.8421 0.8694 0.8762
R2 0.7914 0.0825 0.8135 0.5998 0.8442 0.8503 0.7121 ∗ 0.6336 0.5583 0.6980 0.7283
var 0.7914 ∗ 0.8136 0.5999 0.8321 0.8504 0.7121 ∗ 0.5593 0.5593 0.6984 0.7290
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(a) (b)

Fig. 8. (a) The RMSE of the T-GCN model lower than the GCN model,
which considers spatial feature only, indicating the effectiveness of the T-
GCN to capture spatial feature. (b) The RMSE of the T-GCN model lower
than the GRU model, which considers temporal feature only, indicating
the effectiveness of the T-GCN to capture temporal feature.

precision than those based on single factor (GCN, GRU), in-
dicating that the T-GCN model can capture spatial and tem-
poral feature from traffic data. For example, for the 15-min
traffic forecasting, the RMSE is reduced by approximately
57.8% compared with the GCN model, which considers only
spatial feature and for 30-min traffic forecasting, the RMSE
of the T-GCN model is reduced by 57.6%, indicating that the
T-GCN model can capture spatial dependence. Compared
with the GRU model, which considers only temporal fea-
tures, for 15-min and 30-min traffic forecasting, the RMSE
of the T-GCN model is decreased by approximately 3.3%
and 2.9%, indicating that the T-GCN model can capture
temporal dependence well.

(3) Long-term prediction ability. No matter how the
horizon changes, the T-GCN model can obtain the best
prediction performance through training and the prediction
results have less tendency to change, indicating that our
approach is insensitive to prediction horizons. Thus, we
know that the T-GCN model can be used not only for short-
term prediction but also for long-term prediction. Figure
9(a) shows the change of RMSE and Accuracy at different
prediction horizons, which represent the prediction error
and precision of the T-GCN model, respectively. It can be
seen that the trends of error increase and precision decrease
are small, with a certain degree of stability. Figure 9(b)
shows the comparison of RMSE for baselines at different
horizons. We observe that the T-GCN model can achieve the
best results regardless of the prediction horizon.

4.5 Perturbation Analysis and Robustness

There is inevitably noise during the data collection process
in the real world. To test the noise immunity of the T-
GCN model, we test the robustness of the model through
perturbation analysis experiments.

We add two types of commonly random noise to the
data during the experiment. The random noise obeys the
Gaussian distribution N ∈ (0, σ2)(σ ∈ (0.2, 0.4, 0.8, 1, 2))
and the Poisson distribution P (λ)(λ ∈ (1, 2, 4, 8, 16)) and
then we normalize the values of the noise matrices turn
to [0, 1]. Using different evaluation metrics, the results are
shown as following. Figure 10(a) shows the results of adding
Gaussian noise on SZ-taxi dataset, where the horizontal axis
represents , the vertical axis represents the change of each
evaluation metrics, and different colors indicate different
metrics. Similarly, Figure 10(b) shows the results of adding

(a)

(b)

Fig. 9. (a) Under different prediction horizons, the change of RMSE
and Accuracy are small, indicating that our approach is insensitive to
prediction horizons. (b) Under different prediction horizons, the T-GCN
model has lowest RMSE error compared to baseline methods.

Poisson noise on SZ-taxi. 10(c) and 10(d) are the results of
adding Gaussian noise and Poisson noise based on Los-loop
dataset. It can be seen that the metrics change little whatever
the noise distribution is. Thus, the T-GCN model is robust
and is able to handle high noise issues.

4.6 Model Interpretation
To better understand the T-GCN model, we select one road
on SZ-taxi dataset and visualize prediction results of the test
set. Figure 11, Figure 12, Figure 13, and Figure 14 show the
visualization results for prediction horizons of 15 minutes,
30 minutes, 45 minutes, and 60 minutes, respectively. These
results show:

(1) The T-GCN model predicts poorly at the peak. We
speculate that the main cause is that the GCN model defines
a smooth filter in the Fourier domain and captures spatial
feature by constantly moving the filter. This process leads
to a small change in the overall prediction results, which
makes the peak smoother.

(2) There is a certain error between the real traffic in-
formation and the prediction results. One error is mainly
because when there are no taxis on the roads, there will be
no information record with a zero value. The other error is
because when the traffic information value is small, a small
difference can cause a big relative error.

(3) Regardless of the prediction horizons, the T-GCN
model can always achieve better results. The T-GCN model



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

(a) (b)

(c) (d)

Fig. 10. Perturbation analysis. The horizontal axis represents σ or λ,
the vertical axis represents prediction results, and different colors mean
different metrics. (a) The results of adding Gaussian perturbation on SZ-
taxi. (b) The results of adding Poisson perturbation on SZ-taxi. (c) The
results of adding Gaussian perturbation on Los-loop. (d) The results of
adding Poisson perturbation on Los-loop.

can capture the spatio-temporal features and obtain the
variation trend of traffic information on the road. Moreover,
The T-GCN model detect the start and end of the rush hour
and make prediction results with similar pattern with the
real traffic speed. Those properties are helpful for predicting
traffic congestion and other traffic phenomena.

5 CONCLUSION

In this paper, we propose a novel neural network-based ap-
proach for traffic forecasting called T-GCN, which combines
the GCN and the GRU. We use a graph network to model
the urban road network in which the nodes on the graph
represent roads, the edges represent the connection rela-
tionships between roads, and the traffic information on the
roads is described as the attribute of the nodes on the graph.
On one hand, the GCN is used to capture the topological
structure of the graph to obtain the spatial dependence;
on the other hand, the GRU model is used to capture the
dynamic change of node attribute to obtain the temporal
dependence. Eventually the T-GCN model is used to tackle
spatio-temporal traffic forecasting tasks. When evaluated on
two real-world traffic datasets and compared with the HA
model, the ARIMA model, the SVR model, the GCN model,
and the GRU model, the T-GCN model achieves the best
prediction results under different prediction horizons. In
addition, the perturbation analysis illustrates the robustness
of our approach. In summary, the T-GCN model can success-
fully capture the spatial and temporal features from traffic
data and is not limited to traffic forecasting, but can also be
applied to other spatio-temporal tasks.
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Fig. 11. The visualization results for prediction horizon of 15 minutes.

Fig. 12. The visualization results for prediction horizon of 30 minutes.

Fig. 13. The visualization results for prediction horizon of 45 minutes.

Fig. 14. The visualization results for prediction horizon of 60 minutes.
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